Description: Lemma 0 for smadiadet : The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | marep01ma.a | |
|
marep01ma.b | |
||
marep01ma.r | |
||
marep01ma.0 | |
||
marep01ma.1 | |
||
smadiadetlem.p | |
||
smadiadetlem.g | |
||
Assertion | smadiadetlem0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.a | |
|
2 | marep01ma.b | |
|
3 | marep01ma.r | |
|
4 | marep01ma.0 | |
|
5 | marep01ma.1 | |
|
6 | smadiadetlem.p | |
|
7 | smadiadetlem.g | |
|
8 | 3 | a1i | |
9 | 1 2 | matrcl | |
10 | 9 | simpld | |
11 | 10 | 3ad2ant1 | |
12 | 11 | adantr | |
13 | crngring | |
|
14 | 3 13 | mp1i | |
15 | eldifi | |
|
16 | 15 | adantl | |
17 | 1 2 3 4 5 | marep01ma | |
18 | 17 | 3ad2ant1 | |
19 | 18 | adantr | |
20 | 1 2 6 | matepm2cl | |
21 | 14 16 19 20 | syl3anc | |
22 | id | |
|
23 | fveq2 | |
|
24 | 22 23 | oveq12d | |
25 | 24 | eleq1d | |
26 | 25 | rspccv | |
27 | 21 26 | syl | |
28 | 27 | imp | |
29 | id | |
|
30 | fveq2 | |
|
31 | 29 30 | oveq12d | |
32 | 31 | adantl | |
33 | 6 4 5 | symgmatr01 | |
34 | 33 | 3adant1 | |
35 | 34 | imp | |
36 | 7 4 8 12 28 32 35 | gsummgp0 | |
37 | 36 | ex | |