Metamath Proof Explorer


Theorem smadiadetlem0

Description: Lemma 0 for smadiadet : The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A=NMatR
marep01ma.b B=BaseA
marep01ma.r RCRing
marep01ma.0 0˙=0R
marep01ma.1 1˙=1R
smadiadetlem.p P=BaseSymGrpN
smadiadetlem.g G=mulGrpR
Assertion smadiadetlem0 MBKNLNQPqP|qK=LGnNniN,jNifi=Kifj=L1˙0˙iMjQn=0˙

Proof

Step Hyp Ref Expression
1 marep01ma.a A=NMatR
2 marep01ma.b B=BaseA
3 marep01ma.r RCRing
4 marep01ma.0 0˙=0R
5 marep01ma.1 1˙=1R
6 smadiadetlem.p P=BaseSymGrpN
7 smadiadetlem.g G=mulGrpR
8 3 a1i MBKNLNQPqP|qK=LRCRing
9 1 2 matrcl MBNFinRV
10 9 simpld MBNFin
11 10 3ad2ant1 MBKNLNNFin
12 11 adantr MBKNLNQPqP|qK=LNFin
13 crngring RCRingRRing
14 3 13 mp1i MBKNLNQPqP|qK=LRRing
15 eldifi QPqP|qK=LQP
16 15 adantl MBKNLNQPqP|qK=LQP
17 1 2 3 4 5 marep01ma MBiN,jNifi=Kifj=L1˙0˙iMjB
18 17 3ad2ant1 MBKNLNiN,jNifi=Kifj=L1˙0˙iMjB
19 18 adantr MBKNLNQPqP|qK=LiN,jNifi=Kifj=L1˙0˙iMjB
20 1 2 6 matepm2cl RRingQPiN,jNifi=Kifj=L1˙0˙iMjBmNmiN,jNifi=Kifj=L1˙0˙iMjQmBaseR
21 14 16 19 20 syl3anc MBKNLNQPqP|qK=LmNmiN,jNifi=Kifj=L1˙0˙iMjQmBaseR
22 id m=nm=n
23 fveq2 m=nQm=Qn
24 22 23 oveq12d m=nmiN,jNifi=Kifj=L1˙0˙iMjQm=niN,jNifi=Kifj=L1˙0˙iMjQn
25 24 eleq1d m=nmiN,jNifi=Kifj=L1˙0˙iMjQmBaseRniN,jNifi=Kifj=L1˙0˙iMjQnBaseR
26 25 rspccv mNmiN,jNifi=Kifj=L1˙0˙iMjQmBaseRnNniN,jNifi=Kifj=L1˙0˙iMjQnBaseR
27 21 26 syl MBKNLNQPqP|qK=LnNniN,jNifi=Kifj=L1˙0˙iMjQnBaseR
28 27 imp MBKNLNQPqP|qK=LnNniN,jNifi=Kifj=L1˙0˙iMjQnBaseR
29 id n=mn=m
30 fveq2 n=mQn=Qm
31 29 30 oveq12d n=mniN,jNifi=Kifj=L1˙0˙iMjQn=miN,jNifi=Kifj=L1˙0˙iMjQm
32 31 adantl MBKNLNQPqP|qK=Ln=mniN,jNifi=Kifj=L1˙0˙iMjQn=miN,jNifi=Kifj=L1˙0˙iMjQm
33 6 4 5 symgmatr01 KNLNQPqP|qK=LmNmiN,jNifi=Kifj=L1˙0˙iMjQm=0˙
34 33 3adant1 MBKNLNQPqP|qK=LmNmiN,jNifi=Kifj=L1˙0˙iMjQm=0˙
35 34 imp MBKNLNQPqP|qK=LmNmiN,jNifi=Kifj=L1˙0˙iMjQm=0˙
36 7 4 8 12 28 32 35 gsummgp0 MBKNLNQPqP|qK=LGnNniN,jNifi=Kifj=L1˙0˙iMjQn=0˙
37 36 ex MBKNLNQPqP|qK=LGnNniN,jNifi=Kifj=L1˙0˙iMjQn=0˙