Metamath Proof Explorer


Theorem smadiadetlem1a

Description: Lemma 1a for smadiadet : The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A=NMatR
marep01ma.b B=BaseA
marep01ma.r RCRing
marep01ma.0 0˙=0R
marep01ma.1 1˙=1R
smadiadetlem.p P=BaseSymGrpN
smadiadetlem.g G=mulGrpR
madetminlem.y Y=ℤRHomR
madetminlem.s S=pmSgnN
madetminlem.t ·˙=R
Assertion smadiadetlem1a MBKNLNRpPqP|qK=LYSp·˙GnNniN,jNifi=Kifj=L1˙0˙iMjpn=0˙

Proof

Step Hyp Ref Expression
1 marep01ma.a A=NMatR
2 marep01ma.b B=BaseA
3 marep01ma.r RCRing
4 marep01ma.0 0˙=0R
5 marep01ma.1 1˙=1R
6 smadiadetlem.p P=BaseSymGrpN
7 smadiadetlem.g G=mulGrpR
8 madetminlem.y Y=ℤRHomR
9 madetminlem.s S=pmSgnN
10 madetminlem.t ·˙=R
11 1 2 3 4 5 6 7 smadiadetlem0 MBKNLNpPqP|qK=LGnNniN,jNifi=Kifj=L1˙0˙iMjpn=0˙
12 11 imp MBKNLNpPqP|qK=LGnNniN,jNifi=Kifj=L1˙0˙iMjpn=0˙
13 12 oveq2d MBKNLNpPqP|qK=LYSp·˙GnNniN,jNifi=Kifj=L1˙0˙iMjpn=YSp·˙0˙
14 13 mpteq2dva MBKNLNpPqP|qK=LYSp·˙GnNniN,jNifi=Kifj=L1˙0˙iMjpn=pPqP|qK=LYSp·˙0˙
15 14 oveq2d MBKNLNRpPqP|qK=LYSp·˙GnNniN,jNifi=Kifj=L1˙0˙iMjpn=RpPqP|qK=LYSp·˙0˙
16 crngring RCRingRRing
17 3 16 mp1i MBKNLNpPqP|qK=LRRing
18 1 2 matrcl MBNFinRV
19 18 simpld MBNFin
20 19 3ad2ant1 MBKNLNNFin
21 20 adantr MBKNLNpPqP|qK=LNFin
22 eldifi pPqP|qK=LpP
23 22 adantl MBKNLNpPqP|qK=LpP
24 6 9 8 zrhcopsgnelbas RRingNFinpPYSpBaseR
25 17 21 23 24 syl3anc MBKNLNpPqP|qK=LYSpBaseR
26 eqid BaseR=BaseR
27 26 10 4 ringrz RRingYSpBaseRYSp·˙0˙=0˙
28 17 25 27 syl2anc MBKNLNpPqP|qK=LYSp·˙0˙=0˙
29 28 mpteq2dva MBKNLNpPqP|qK=LYSp·˙0˙=pPqP|qK=L0˙
30 29 oveq2d MBKNLNRpPqP|qK=LYSp·˙0˙=RpPqP|qK=L0˙
31 ringmnd RRingRMnd
32 3 16 31 mp2b RMnd
33 6 fvexi PV
34 difexg PVPqP|qK=LV
35 33 34 mp1i MBKNLNPqP|qK=LV
36 4 gsumz RMndPqP|qK=LVRpPqP|qK=L0˙=0˙
37 32 35 36 sylancr MBKNLNRpPqP|qK=L0˙=0˙
38 15 30 37 3eqtrd MBKNLNRpPqP|qK=LYSp·˙GnNniN,jNifi=Kifj=L1˙0˙iMjpn=0˙