Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of Kalmbach p. 153. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spansncv.1 | |
|
spansncv.2 | |
||
spansncv.3 | |
||
Assertion | spansncvi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansncv.1 | |
|
2 | spansncv.2 | |
|
3 | spansncv.3 | |
|
4 | simpr | |
|
5 | pssss | |
|
6 | 5 | adantr | |
7 | pssnel | |
|
8 | ssel2 | |
|
9 | 1 3 | spansnji | |
10 | 9 | eleq2i | |
11 | 3 | spansnchi | |
12 | 1 11 | chseli | |
13 | 10 12 | bitr3i | |
14 | eleq1 | |
|
15 | 14 | biimpac | |
16 | 5 | sselda | |
17 | 2 | chshii | |
18 | shsubcl | |
|
19 | 17 18 | mp3an1 | |
20 | 15 16 19 | syl2an | |
21 | 20 | exp43 | |
22 | 21 | com14 | |
23 | 22 | imp45 | |
24 | 1 | cheli | |
25 | 11 | cheli | |
26 | hvpncan2 | |
|
27 | 24 25 26 | syl2an | |
28 | 27 | eleq1d | |
29 | 23 28 | imbitrid | |
30 | 29 | imp | |
31 | 30 | anandis | |
32 | 31 | exp45 | |
33 | 32 | imp41 | |
34 | 33 | adantrr | |
35 | oveq2 | |
|
36 | ax-hvaddid | |
|
37 | 24 36 | syl | |
38 | 35 37 | sylan9eqr | |
39 | 38 | eqeq2d | |
40 | eleq1a | |
|
41 | 40 | adantr | |
42 | 39 41 | sylbid | |
43 | 42 | impancom | |
44 | 43 | necon3bd | |
45 | 44 | imp | |
46 | spansnss | |
|
47 | 17 46 | mpan | |
48 | spansneleq | |
|
49 | 3 48 | mpan | |
50 | 49 | imp | |
51 | 50 | sseq1d | |
52 | 47 51 | imbitrid | |
53 | 52 | ancoms | |
54 | 45 53 | sylan2 | |
55 | 54 | exp44 | |
56 | 55 | com12 | |
57 | 56 | imp41 | |
58 | 57 | adantrl | |
59 | 34 58 | mpd | |
60 | 59 | exp43 | |
61 | 60 | rexlimivv | |
62 | 13 61 | sylbi | |
63 | 8 62 | syl | |
64 | 63 | imp | |
65 | 64 | anandirs | |
66 | 65 | expimpd | |
67 | 66 | exlimdv | |
68 | 7 67 | syl5 | |
69 | 68 | ex | |
70 | 69 | pm2.43d | |
71 | 70 | impcom | |
72 | 1 11 2 | chlubii | |
73 | 6 71 72 | syl2anc | |
74 | 4 73 | eqssd | |