Metamath Proof Explorer


Theorem spansncvi

Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of Kalmbach p. 153. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses spansncv.1 AC
spansncv.2 BC
spansncv.3 C
Assertion spansncvi ABBAspanCB=AspanC

Proof

Step Hyp Ref Expression
1 spansncv.1 AC
2 spansncv.2 BC
3 spansncv.3 C
4 simpr ABBAspanCBAspanC
5 pssss ABAB
6 5 adantr ABBAspanCAB
7 pssnel ABxxB¬xA
8 ssel2 BAspanCxBxAspanC
9 1 3 spansnji A+spanC=AspanC
10 9 eleq2i xA+spanCxAspanC
11 3 spansnchi spanCC
12 1 11 chseli xA+spanCyAzspanCx=y+z
13 10 12 bitr3i xAspanCyAzspanCx=y+z
14 eleq1 x=y+zxBy+zB
15 14 biimpac xBx=y+zy+zB
16 5 sselda AByAyB
17 2 chshii BS
18 shsubcl BSy+zByBy+z-yB
19 17 18 mp3an1 y+zByBy+z-yB
20 15 16 19 syl2an xBx=y+zAByAy+z-yB
21 20 exp43 xBx=y+zAByAy+z-yB
22 21 com14 yAx=y+zABxBy+z-yB
23 22 imp45 yAx=y+zABxBy+z-yB
24 1 cheli yAy
25 11 cheli zspanCz
26 hvpncan2 yzy+z-y=z
27 24 25 26 syl2an yAzspanCy+z-y=z
28 27 eleq1d yAzspanCy+z-yBzB
29 23 28 imbitrid yAzspanCyAx=y+zABxBzB
30 29 imp yAzspanCyAx=y+zABxBzB
31 30 anandis yAzspanCx=y+zABxBzB
32 31 exp45 yAzspanCx=y+zABxBzB
33 32 imp41 yAzspanCx=y+zABxBzB
34 33 adantrr yAzspanCx=y+zABxB¬xAzB
35 oveq2 z=0y+z=y+0
36 ax-hvaddid yy+0=y
37 24 36 syl yAy+0=y
38 35 37 sylan9eqr yAz=0y+z=y
39 38 eqeq2d yAz=0x=y+zx=y
40 eleq1a yAx=yxA
41 40 adantr yAz=0x=yxA
42 39 41 sylbid yAz=0x=y+zxA
43 42 impancom yAx=y+zz=0xA
44 43 necon3bd yAx=y+z¬xAz0
45 44 imp yAx=y+z¬xAz0
46 spansnss BSzBspanzB
47 17 46 mpan zBspanzB
48 spansneleq Cz0zspanCspanz=spanC
49 3 48 mpan z0zspanCspanz=spanC
50 49 imp z0zspanCspanz=spanC
51 50 sseq1d z0zspanCspanzBspanCB
52 47 51 imbitrid z0zspanCzBspanCB
53 52 ancoms zspanCz0zBspanCB
54 45 53 sylan2 zspanCyAx=y+z¬xAzBspanCB
55 54 exp44 zspanCyAx=y+z¬xAzBspanCB
56 55 com12 yAzspanCx=y+z¬xAzBspanCB
57 56 imp41 yAzspanCx=y+z¬xAzBspanCB
58 57 adantrl yAzspanCx=y+zABxB¬xAzBspanCB
59 34 58 mpd yAzspanCx=y+zABxB¬xAspanCB
60 59 exp43 yAzspanCx=y+zABxB¬xAspanCB
61 60 rexlimivv yAzspanCx=y+zABxB¬xAspanCB
62 13 61 sylbi xAspanCABxB¬xAspanCB
63 8 62 syl BAspanCxBABxB¬xAspanCB
64 63 imp BAspanCxBABxB¬xAspanCB
65 64 anandirs BAspanCABxB¬xAspanCB
66 65 expimpd BAspanCABxB¬xAspanCB
67 66 exlimdv BAspanCABxxB¬xAspanCB
68 7 67 syl5 BAspanCABABspanCB
69 68 ex BAspanCABABspanCB
70 69 pm2.43d BAspanCABspanCB
71 70 impcom ABBAspanCspanCB
72 1 11 2 chlubii ABspanCBAspanCB
73 6 71 72 syl2anc ABBAspanCAspanCB
74 4 73 eqssd ABBAspanCB=AspanC