Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sticksstones17.1 | |
|
sticksstones17.2 | |
||
sticksstones17.3 | |
||
sticksstones17.4 | |
||
sticksstones17.5 | |
||
sticksstones17.6 | |
||
Assertion | sticksstones17 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones17.1 | |
|
2 | sticksstones17.2 | |
|
3 | sticksstones17.3 | |
|
4 | sticksstones17.4 | |
|
5 | sticksstones17.5 | |
|
6 | sticksstones17.6 | |
|
7 | 4 | eqimssi | |
8 | 7 | a1i | |
9 | 8 | sseld | |
10 | 9 | imp | |
11 | vex | |
|
12 | feq1 | |
|
13 | simpl | |
|
14 | 13 | fveq1d | |
15 | 14 | sumeq2dv | |
16 | 15 | eqeq1d | |
17 | 12 16 | anbi12d | |
18 | 11 17 | elab | |
19 | 10 18 | sylib | |
20 | 19 | simpld | |
21 | 20 | adantr | |
22 | 21 | 3impa | |
23 | f1of | |
|
24 | 5 23 | syl | |
25 | 24 | adantr | |
26 | 25 | adantr | |
27 | 26 | 3impa | |
28 | simp3 | |
|
29 | 27 28 | ffvelcdmd | |
30 | 22 29 | ffvelcdmd | |
31 | 30 | 3expa | |
32 | 31 | fmpttd | |
33 | eqidd | |
|
34 | simpr | |
|
35 | 34 | fveq2d | |
36 | 35 | fveq2d | |
37 | simpr | |
|
38 | fvexd | |
|
39 | 33 36 37 38 | fvmptd | |
40 | 39 | sumeq2dv | |
41 | fveq2 | |
|
42 | fzfi | |
|
43 | 42 | a1i | |
44 | 5 | adantr | |
45 | eqidd | |
|
46 | nn0sscn | |
|
47 | 46 | a1i | |
48 | fss | |
|
49 | 20 47 48 | syl2anc | |
50 | 49 | ffvelcdmda | |
51 | 41 43 44 45 50 | fsumf1o | |
52 | 51 | eqcomd | |
53 | fveq2 | |
|
54 | 53 | cbvsumv | |
55 | 54 | a1i | |
56 | 19 | simprd | |
57 | 55 56 | eqtrd | |
58 | 52 57 | eqtrd | |
59 | 40 58 | eqtrd | |
60 | 32 59 | jca | |
61 | fzfid | |
|
62 | 61 | mptexd | |
63 | feq1 | |
|
64 | simpl | |
|
65 | 64 | fveq1d | |
66 | 65 | sumeq2dv | |
67 | 66 | eqeq1d | |
68 | 63 67 | anbi12d | |
69 | 68 | elabg | |
70 | 62 69 | syl | |
71 | 60 70 | mpbird | |
72 | 3 | a1i | |
73 | 71 72 | eleqtrrd | |
74 | 73 6 | fmptd | |