Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones17.1 |
|
2 |
|
sticksstones17.2 |
|
3 |
|
sticksstones17.3 |
|
4 |
|
sticksstones17.4 |
|
5 |
|
sticksstones17.5 |
|
6 |
|
sticksstones17.6 |
|
7 |
4
|
eqimssi |
|
8 |
7
|
a1i |
|
9 |
8
|
sseld |
|
10 |
9
|
imp |
|
11 |
|
vex |
|
12 |
|
feq1 |
|
13 |
|
simpl |
|
14 |
13
|
fveq1d |
|
15 |
14
|
sumeq2dv |
|
16 |
15
|
eqeq1d |
|
17 |
12 16
|
anbi12d |
|
18 |
11 17
|
elab |
|
19 |
10 18
|
sylib |
|
20 |
19
|
simpld |
|
21 |
20
|
adantr |
|
22 |
21
|
3impa |
|
23 |
|
f1of |
|
24 |
5 23
|
syl |
|
25 |
24
|
adantr |
|
26 |
25
|
adantr |
|
27 |
26
|
3impa |
|
28 |
|
simp3 |
|
29 |
27 28
|
ffvelrnd |
|
30 |
22 29
|
ffvelrnd |
|
31 |
30
|
3expa |
|
32 |
31
|
fmpttd |
|
33 |
|
eqidd |
|
34 |
|
simpr |
|
35 |
34
|
fveq2d |
|
36 |
35
|
fveq2d |
|
37 |
|
simpr |
|
38 |
|
fvexd |
|
39 |
33 36 37 38
|
fvmptd |
|
40 |
39
|
sumeq2dv |
|
41 |
|
fveq2 |
|
42 |
|
fzfi |
|
43 |
42
|
a1i |
|
44 |
5
|
adantr |
|
45 |
|
eqidd |
|
46 |
|
nn0sscn |
|
47 |
46
|
a1i |
|
48 |
|
fss |
|
49 |
20 47 48
|
syl2anc |
|
50 |
49
|
ffvelrnda |
|
51 |
41 43 44 45 50
|
fsumf1o |
|
52 |
51
|
eqcomd |
|
53 |
|
fveq2 |
|
54 |
53
|
cbvsumv |
|
55 |
54
|
a1i |
|
56 |
19
|
simprd |
|
57 |
55 56
|
eqtrd |
|
58 |
52 57
|
eqtrd |
|
59 |
40 58
|
eqtrd |
|
60 |
32 59
|
jca |
|
61 |
|
fzfid |
|
62 |
61
|
mptexd |
|
63 |
|
feq1 |
|
64 |
|
simpl |
|
65 |
64
|
fveq1d |
|
66 |
65
|
sumeq2dv |
|
67 |
66
|
eqeq1d |
|
68 |
63 67
|
anbi12d |
|
69 |
68
|
elabg |
|
70 |
62 69
|
syl |
|
71 |
60 70
|
mpbird |
|
72 |
3
|
a1i |
|
73 |
71 72
|
eleqtrrd |
|
74 |
73 6
|
fmptd |
|