Metamath Proof Explorer


Theorem sticksstones17

Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024)

Ref Expression
Hypotheses sticksstones17.1 φN0
sticksstones17.2 φK0
sticksstones17.3 A=g|g:1K0i=1Kgi=N
sticksstones17.4 B=h|h:S0iShi=N
sticksstones17.5 φZ:1K1-1 ontoS
sticksstones17.6 G=bBy1KbZy
Assertion sticksstones17 φG:BA

Proof

Step Hyp Ref Expression
1 sticksstones17.1 φN0
2 sticksstones17.2 φK0
3 sticksstones17.3 A=g|g:1K0i=1Kgi=N
4 sticksstones17.4 B=h|h:S0iShi=N
5 sticksstones17.5 φZ:1K1-1 ontoS
6 sticksstones17.6 G=bBy1KbZy
7 4 eqimssi Bh|h:S0iShi=N
8 7 a1i φBh|h:S0iShi=N
9 8 sseld φbBbh|h:S0iShi=N
10 9 imp φbBbh|h:S0iShi=N
11 vex bV
12 feq1 h=bh:S0b:S0
13 simpl h=biSh=b
14 13 fveq1d h=biShi=bi
15 14 sumeq2dv h=biShi=iSbi
16 15 eqeq1d h=biShi=NiSbi=N
17 12 16 anbi12d h=bh:S0iShi=Nb:S0iSbi=N
18 11 17 elab bh|h:S0iShi=Nb:S0iSbi=N
19 10 18 sylib φbBb:S0iSbi=N
20 19 simpld φbBb:S0
21 20 adantr φbBy1Kb:S0
22 21 3impa φbBy1Kb:S0
23 f1of Z:1K1-1 ontoSZ:1KS
24 5 23 syl φZ:1KS
25 24 adantr φbBZ:1KS
26 25 adantr φbBy1KZ:1KS
27 26 3impa φbBy1KZ:1KS
28 simp3 φbBy1Ky1K
29 27 28 ffvelcdmd φbBy1KZyS
30 22 29 ffvelcdmd φbBy1KbZy0
31 30 3expa φbBy1KbZy0
32 31 fmpttd φbBy1KbZy:1K0
33 eqidd φbBi1Ky1KbZy=y1KbZy
34 simpr φbBi1Ky=iy=i
35 34 fveq2d φbBi1Ky=iZy=Zi
36 35 fveq2d φbBi1Ky=ibZy=bZi
37 simpr φbBi1Ki1K
38 fvexd φbBi1KbZiV
39 33 36 37 38 fvmptd φbBi1Ky1KbZyi=bZi
40 39 sumeq2dv φbBi=1Ky1KbZyi=i=1KbZi
41 fveq2 s=Zibs=bZi
42 fzfi 1KFin
43 42 a1i φbB1KFin
44 5 adantr φbBZ:1K1-1 ontoS
45 eqidd φbBi1KZi=Zi
46 nn0sscn 0
47 46 a1i φbB0
48 fss b:S00b:S
49 20 47 48 syl2anc φbBb:S
50 49 ffvelcdmda φbBsSbs
51 41 43 44 45 50 fsumf1o φbBsSbs=i=1KbZi
52 51 eqcomd φbBi=1KbZi=sSbs
53 fveq2 s=ibs=bi
54 53 cbvsumv sSbs=iSbi
55 54 a1i φbBsSbs=iSbi
56 19 simprd φbBiSbi=N
57 55 56 eqtrd φbBsSbs=N
58 52 57 eqtrd φbBi=1KbZi=N
59 40 58 eqtrd φbBi=1Ky1KbZyi=N
60 32 59 jca φbBy1KbZy:1K0i=1Ky1KbZyi=N
61 fzfid φbB1KFin
62 61 mptexd φbBy1KbZyV
63 feq1 g=y1KbZyg:1K0y1KbZy:1K0
64 simpl g=y1KbZyi1Kg=y1KbZy
65 64 fveq1d g=y1KbZyi1Kgi=y1KbZyi
66 65 sumeq2dv g=y1KbZyi=1Kgi=i=1Ky1KbZyi
67 66 eqeq1d g=y1KbZyi=1Kgi=Ni=1Ky1KbZyi=N
68 63 67 anbi12d g=y1KbZyg:1K0i=1Kgi=Ny1KbZy:1K0i=1Ky1KbZyi=N
69 68 elabg y1KbZyVy1KbZyg|g:1K0i=1Kgi=Ny1KbZy:1K0i=1Ky1KbZyi=N
70 62 69 syl φbBy1KbZyg|g:1K0i=1Kgi=Ny1KbZy:1K0i=1Ky1KbZyi=N
71 60 70 mpbird φbBy1KbZyg|g:1K0i=1Kgi=N
72 3 a1i φbBA=g|g:1K0i=1Kgi=N
73 71 72 eleqtrrd φbBy1KbZyA
74 73 6 fmptd φG:BA