Metamath Proof Explorer


Theorem subrgascl

Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrgascl.p P=ImPolyR
subrgascl.a A=algScP
subrgascl.h H=R𝑠T
subrgascl.u U=ImPolyH
subrgascl.i φIW
subrgascl.r φTSubRingR
subrgascl.c C=algScU
Assertion subrgascl φC=AT

Proof

Step Hyp Ref Expression
1 subrgascl.p P=ImPolyR
2 subrgascl.a A=algScP
3 subrgascl.h H=R𝑠T
4 subrgascl.u U=ImPolyH
5 subrgascl.i φIW
6 subrgascl.r φTSubRingR
7 subrgascl.c C=algScU
8 eqid ScalarU=ScalarU
9 eqid BaseScalarU=BaseScalarU
10 7 8 9 asclfn CFnBaseScalarU
11 3 subrgbas TSubRingRT=BaseH
12 6 11 syl φT=BaseH
13 3 ovexi HV
14 13 a1i φHV
15 4 5 14 mplsca φH=ScalarU
16 15 fveq2d φBaseH=BaseScalarU
17 12 16 eqtrd φT=BaseScalarU
18 17 fneq2d φCFnTCFnBaseScalarU
19 10 18 mpbiri φCFnT
20 eqid ScalarP=ScalarP
21 eqid BaseScalarP=BaseScalarP
22 2 20 21 asclfn AFnBaseScalarP
23 subrgrcl TSubRingRRRing
24 6 23 syl φRRing
25 1 5 24 mplsca φR=ScalarP
26 25 fveq2d φBaseR=BaseScalarP
27 26 fneq2d φAFnBaseRAFnBaseScalarP
28 22 27 mpbiri φAFnBaseR
29 eqid BaseR=BaseR
30 29 subrgss TSubRingRTBaseR
31 6 30 syl φTBaseR
32 fnssres AFnBaseRTBaseRATFnT
33 28 31 32 syl2anc φATFnT
34 fvres xTATx=Ax
35 34 adantl φxTATx=Ax
36 eqid 0R=0R
37 3 36 subrg0 TSubRingR0R=0H
38 6 37 syl φ0R=0H
39 38 ifeq2d φify=I×0x0R=ify=I×0x0H
40 39 adantr φxTify=I×0x0R=ify=I×0x0H
41 40 mpteq2dv φxTyf0I|f-1Finify=I×0x0R=yf0I|f-1Finify=I×0x0H
42 eqid f0I|f-1Fin=f0I|f-1Fin
43 5 adantr φxTIW
44 24 adantr φxTRRing
45 31 sselda φxTxBaseR
46 1 42 36 29 2 43 44 45 mplascl φxTAx=yf0I|f-1Finify=I×0x0R
47 eqid 0H=0H
48 eqid BaseH=BaseH
49 3 subrgring TSubRingRHRing
50 6 49 syl φHRing
51 50 adantr φxTHRing
52 12 eleq2d φxTxBaseH
53 52 biimpa φxTxBaseH
54 4 42 47 48 7 43 51 53 mplascl φxTCx=yf0I|f-1Finify=I×0x0H
55 41 46 54 3eqtr4d φxTAx=Cx
56 35 55 eqtr2d φxTCx=ATx
57 19 33 56 eqfnfvd φC=AT