Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrgascl.p | |
|
subrgascl.a | |
||
subrgascl.h | |
||
subrgascl.u | |
||
subrgascl.i | |
||
subrgascl.r | |
||
subrgascl.c | |
||
Assertion | subrgascl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgascl.p | |
|
2 | subrgascl.a | |
|
3 | subrgascl.h | |
|
4 | subrgascl.u | |
|
5 | subrgascl.i | |
|
6 | subrgascl.r | |
|
7 | subrgascl.c | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 7 8 9 | asclfn | |
11 | 3 | subrgbas | |
12 | 6 11 | syl | |
13 | 3 | ovexi | |
14 | 13 | a1i | |
15 | 4 5 14 | mplsca | |
16 | 15 | fveq2d | |
17 | 12 16 | eqtrd | |
18 | 17 | fneq2d | |
19 | 10 18 | mpbiri | |
20 | eqid | |
|
21 | eqid | |
|
22 | 2 20 21 | asclfn | |
23 | subrgrcl | |
|
24 | 6 23 | syl | |
25 | 1 5 24 | mplsca | |
26 | 25 | fveq2d | |
27 | 26 | fneq2d | |
28 | 22 27 | mpbiri | |
29 | eqid | |
|
30 | 29 | subrgss | |
31 | 6 30 | syl | |
32 | fnssres | |
|
33 | 28 31 32 | syl2anc | |
34 | fvres | |
|
35 | 34 | adantl | |
36 | eqid | |
|
37 | 3 36 | subrg0 | |
38 | 6 37 | syl | |
39 | 38 | ifeq2d | |
40 | 39 | adantr | |
41 | 40 | mpteq2dv | |
42 | eqid | |
|
43 | 5 | adantr | |
44 | 24 | adantr | |
45 | 31 | sselda | |
46 | 1 42 36 29 2 43 44 45 | mplascl | |
47 | eqid | |
|
48 | eqid | |
|
49 | 3 | subrgring | |
50 | 6 49 | syl | |
51 | 50 | adantr | |
52 | 12 | eleq2d | |
53 | 52 | biimpa | |
54 | 4 42 47 48 7 43 51 53 | mplascl | |
55 | 41 46 54 | 3eqtr4d | |
56 | 35 55 | eqtr2d | |
57 | 19 33 56 | eqfnfvd | |