Metamath Proof Explorer


Theorem subupgr

Description: A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 21-Nov-2020)

Ref Expression
Assertion subupgr GUPGraphSSubGraphGSUPGraph

Proof

Step Hyp Ref Expression
1 eqid VtxS=VtxS
2 eqid VtxG=VtxG
3 eqid iEdgS=iEdgS
4 eqid iEdgG=iEdgG
5 eqid EdgS=EdgS
6 1 2 3 4 5 subgrprop2 SSubGraphGVtxSVtxGiEdgSiEdgGEdgS𝒫VtxS
7 upgruhgr GUPGraphGUHGraph
8 subgruhgrfun GUHGraphSSubGraphGFuniEdgS
9 7 8 sylan GUPGraphSSubGraphGFuniEdgS
10 9 ancoms SSubGraphGGUPGraphFuniEdgS
11 10 funfnd SSubGraphGGUPGraphiEdgSFndomiEdgS
12 11 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphiEdgSFndomiEdgS
13 fveq2 e=iEdgSxe=iEdgSx
14 13 breq1d e=iEdgSxe2iEdgSx2
15 7 anim2i SSubGraphGGUPGraphSSubGraphGGUHGraph
16 15 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphSSubGraphGGUHGraph
17 16 ancomd VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphGUHGraphSSubGraphG
18 17 anim1i VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSGUHGraphSSubGraphGxdomiEdgS
19 18 simplld VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSGUHGraph
20 simpl SSubGraphGGUPGraphSSubGraphG
21 20 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphSSubGraphG
22 21 adantr VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSSSubGraphG
23 simpr VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSxdomiEdgS
24 1 3 19 22 23 subgruhgredgd VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSiEdgSx𝒫VtxS
25 4 uhgrfun GUHGraphFuniEdgG
26 7 25 syl GUPGraphFuniEdgG
27 26 ad2antll VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphFuniEdgG
28 27 adantr VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSFuniEdgG
29 simpll2 VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSiEdgSiEdgG
30 funssfv FuniEdgGiEdgSiEdgGxdomiEdgSiEdgGx=iEdgSx
31 28 29 23 30 syl3anc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSiEdgGx=iEdgSx
32 31 eqcomd VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSiEdgSx=iEdgGx
33 32 fveq2d VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSiEdgSx=iEdgGx
34 subgreldmiedg SSubGraphGxdomiEdgSxdomiEdgG
35 34 ex SSubGraphGxdomiEdgSxdomiEdgG
36 35 adantr SSubGraphGGUPGraphxdomiEdgSxdomiEdgG
37 36 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSxdomiEdgG
38 simpr xdomiEdgGGUPGraphGUPGraph
39 26 funfnd GUPGraphiEdgGFndomiEdgG
40 39 adantl xdomiEdgGGUPGraphiEdgGFndomiEdgG
41 simpl xdomiEdgGGUPGraphxdomiEdgG
42 2 4 upgrle GUPGraphiEdgGFndomiEdgGxdomiEdgGiEdgGx2
43 38 40 41 42 syl3anc xdomiEdgGGUPGraphiEdgGx2
44 43 expcom GUPGraphxdomiEdgGiEdgGx2
45 44 ad2antll VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgGiEdgGx2
46 37 45 syld VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSiEdgGx2
47 46 imp VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSiEdgGx2
48 33 47 eqbrtrd VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSiEdgSx2
49 14 24 48 elrabd VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSiEdgSxe𝒫VtxS|e2
50 49 ralrimiva VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphxdomiEdgSiEdgSxe𝒫VtxS|e2
51 fnfvrnss iEdgSFndomiEdgSxdomiEdgSiEdgSxe𝒫VtxS|e2raniEdgSe𝒫VtxS|e2
52 12 50 51 syl2anc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphraniEdgSe𝒫VtxS|e2
53 df-f iEdgS:domiEdgSe𝒫VtxS|e2iEdgSFndomiEdgSraniEdgSe𝒫VtxS|e2
54 12 52 53 sylanbrc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphiEdgS:domiEdgSe𝒫VtxS|e2
55 subgrv SSubGraphGSVGV
56 1 3 isupgr SVSUPGraphiEdgS:domiEdgSe𝒫VtxS|e2
57 56 adantr SVGVSUPGraphiEdgS:domiEdgSe𝒫VtxS|e2
58 55 57 syl SSubGraphGSUPGraphiEdgS:domiEdgSe𝒫VtxS|e2
59 58 adantr SSubGraphGGUPGraphSUPGraphiEdgS:domiEdgSe𝒫VtxS|e2
60 59 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphSUPGraphiEdgS:domiEdgSe𝒫VtxS|e2
61 54 60 mpbird VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphSUPGraph
62 61 ex VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUPGraphSUPGraph
63 6 62 syl SSubGraphGSSubGraphGGUPGraphSUPGraph
64 63 anabsi8 GUPGraphSSubGraphGSUPGraph