Metamath Proof Explorer


Theorem sumsplit

Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses sumsplit.1 Z=M
sumsplit.2 φM
sumsplit.3 φAB=
sumsplit.4 φABZ
sumsplit.5 φkZFk=ifkAC0
sumsplit.6 φkZGk=ifkBC0
sumsplit.7 φkABC
sumsplit.8 φseqM+Fdom
sumsplit.9 φseqM+Gdom
Assertion sumsplit φkABC=kAC+kBC

Proof

Step Hyp Ref Expression
1 sumsplit.1 Z=M
2 sumsplit.2 φM
3 sumsplit.3 φAB=
4 sumsplit.4 φABZ
5 sumsplit.5 φkZFk=ifkAC0
6 sumsplit.6 φkZGk=ifkBC0
7 sumsplit.7 φkABC
8 sumsplit.8 φseqM+Fdom
9 sumsplit.9 φseqM+Gdom
10 7 ralrimiva φkABC
11 1 eqimssi ZM
12 11 a1i φZM
13 12 orcd φZMZFin
14 sumss2 ABZkABCZMZFinkABC=kZifkABC0
15 4 10 13 14 syl21anc φkABC=kZifkABC0
16 iftrue kAifkAC0=C
17 16 adantl φkAifkAC0=C
18 elun1 kAkAB
19 18 7 sylan2 φkAC
20 17 19 eqeltrd φkAifkAC0
21 iffalse ¬kAifkAC0=0
22 0cn 0
23 21 22 eqeltrdi ¬kAifkAC0
24 23 adantl φ¬kAifkAC0
25 20 24 pm2.61dan φifkAC0
26 25 adantr φkZifkAC0
27 iftrue kBifkBC0=C
28 27 adantl φkBifkBC0=C
29 elun2 kBkAB
30 29 7 sylan2 φkBC
31 28 30 eqeltrd φkBifkBC0
32 iffalse ¬kBifkBC0=0
33 32 22 eqeltrdi ¬kBifkBC0
34 33 adantl φ¬kBifkBC0
35 31 34 pm2.61dan φifkBC0
36 35 adantr φkZifkBC0
37 1 2 5 26 6 36 8 9 isumadd φkZifkAC0+ifkBC0=kZifkAC0+kZifkBC0
38 19 addridd φkAC+0=C
39 noel ¬k
40 3 eleq2d φkABk
41 elin kABkAkB
42 40 41 bitr3di φkkAkB
43 39 42 mtbii φ¬kAkB
44 imnan kA¬kB¬kAkB
45 43 44 sylibr φkA¬kB
46 45 imp φkA¬kB
47 46 32 syl φkAifkBC0=0
48 17 47 oveq12d φkAifkAC0+ifkBC0=C+0
49 iftrue kABifkABC0=C
50 18 49 syl kAifkABC0=C
51 50 adantl φkAifkABC0=C
52 38 48 51 3eqtr4rd φkAifkABC0=ifkAC0+ifkBC0
53 35 addlidd φ0+ifkBC0=ifkBC0
54 53 adantr φ¬kA0+ifkBC0=ifkBC0
55 21 adantl φ¬kAifkAC0=0
56 55 oveq1d φ¬kAifkAC0+ifkBC0=0+ifkBC0
57 elun kABkAkB
58 biorf ¬kAkBkAkB
59 57 58 bitr4id ¬kAkABkB
60 59 adantl φ¬kAkABkB
61 60 ifbid φ¬kAifkABC0=ifkBC0
62 54 56 61 3eqtr4rd φ¬kAifkABC0=ifkAC0+ifkBC0
63 52 62 pm2.61dan φifkABC0=ifkAC0+ifkBC0
64 63 sumeq2sdv φkZifkABC0=kZifkAC0+ifkBC0
65 4 unssad φAZ
66 19 ralrimiva φkAC
67 sumss2 AZkACZMZFinkAC=kZifkAC0
68 65 66 13 67 syl21anc φkAC=kZifkAC0
69 4 unssbd φBZ
70 30 ralrimiva φkBC
71 sumss2 BZkBCZMZFinkBC=kZifkBC0
72 69 70 13 71 syl21anc φkBC=kZifkBC0
73 68 72 oveq12d φkAC+kBC=kZifkAC0+kZifkBC0
74 37 64 73 3eqtr4rd φkAC+kBC=kZifkABC0
75 15 74 eqtr4d φkABC=kAC+kBC