Description: The union of a nonempty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | suplem1pr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr | |
|
2 | 1 | brel | |
3 | 2 | simpld | |
4 | 3 | ralimi | |
5 | dfss3 | |
|
6 | 4 5 | sylibr | |
7 | 6 | rexlimivw | |
8 | 7 | adantl | |
9 | n0 | |
|
10 | ssel | |
|
11 | prn0 | |
|
12 | 0pss | |
|
13 | 11 12 | sylibr | |
14 | elssuni | |
|
15 | psssstr | |
|
16 | 13 14 15 | syl2an | |
17 | 16 | expcom | |
18 | 10 17 | sylcom | |
19 | 18 | exlimdv | |
20 | 9 19 | biimtrid | |
21 | prpssnq | |
|
22 | 21 | adantl | |
23 | ltprord | |
|
24 | pssss | |
|
25 | 23 24 | biimtrdi | |
26 | 2 25 | mpcom | |
27 | 26 | ralimi | |
28 | unissb | |
|
29 | 27 28 | sylibr | |
30 | sspsstr | |
|
31 | 30 | expcom | |
32 | 22 29 31 | syl2im | |
33 | 32 | rexlimdva | |
34 | 20 33 | anim12d | |
35 | 8 34 | mpcom | |
36 | prcdnq | |
|
37 | 36 | ex | |
38 | 37 | com3r | |
39 | 10 38 | sylan9 | |
40 | 39 | reximdvai | |
41 | eluni2 | |
|
42 | eluni2 | |
|
43 | 40 41 42 | 3imtr4g | |
44 | 43 | ex | |
45 | 44 | com23 | |
46 | 45 | alrimdv | |
47 | eluni | |
|
48 | prnmax | |
|
49 | 48 | ex | |
50 | 10 49 | syl6 | |
51 | 50 | com23 | |
52 | 51 | imp | |
53 | ssrexv | |
|
54 | 14 53 | syl | |
55 | 52 54 | sylcom | |
56 | 55 | expimpd | |
57 | 56 | exlimdv | |
58 | 47 57 | biimtrid | |
59 | 46 58 | jcad | |
60 | 59 | ralrimiv | |
61 | 8 60 | syl | |
62 | elnp | |
|
63 | 35 61 62 | sylanbrc | |