Metamath Proof Explorer


Theorem suplem1pr

Description: The union of a nonempty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion suplem1pr Ax𝑷yAy<𝑷xA𝑷

Proof

Step Hyp Ref Expression
1 ltrelpr <𝑷𝑷×𝑷
2 1 brel y<𝑷xy𝑷x𝑷
3 2 simpld y<𝑷xy𝑷
4 3 ralimi yAy<𝑷xyAy𝑷
5 dfss3 A𝑷yAy𝑷
6 4 5 sylibr yAy<𝑷xA𝑷
7 6 rexlimivw x𝑷yAy<𝑷xA𝑷
8 7 adantl Ax𝑷yAy<𝑷xA𝑷
9 n0 AzzA
10 ssel A𝑷zAz𝑷
11 prn0 z𝑷z
12 0pss zz
13 11 12 sylibr z𝑷z
14 elssuni zAzA
15 psssstr zzAA
16 13 14 15 syl2an z𝑷zAA
17 16 expcom zAz𝑷A
18 10 17 sylcom A𝑷zAA
19 18 exlimdv A𝑷zzAA
20 9 19 biimtrid A𝑷AA
21 prpssnq x𝑷x𝑸
22 21 adantl A𝑷x𝑷x𝑸
23 ltprord y𝑷x𝑷y<𝑷xyx
24 pssss yxyx
25 23 24 biimtrdi y𝑷x𝑷y<𝑷xyx
26 2 25 mpcom y<𝑷xyx
27 26 ralimi yAy<𝑷xyAyx
28 unissb AxyAyx
29 27 28 sylibr yAy<𝑷xAx
30 sspsstr Axx𝑸A𝑸
31 30 expcom x𝑸AxA𝑸
32 22 29 31 syl2im A𝑷x𝑷yAy<𝑷xA𝑸
33 32 rexlimdva A𝑷x𝑷yAy<𝑷xA𝑸
34 20 33 anim12d A𝑷Ax𝑷yAy<𝑷xAA𝑸
35 8 34 mpcom Ax𝑷yAy<𝑷xAA𝑸
36 prcdnq z𝑷xzy<𝑸xyz
37 36 ex z𝑷xzy<𝑸xyz
38 37 com3r y<𝑸xz𝑷xzyz
39 10 38 sylan9 A𝑷y<𝑸xzAxzyz
40 39 reximdvai A𝑷y<𝑸xzAxzzAyz
41 eluni2 xAzAxz
42 eluni2 yAzAyz
43 40 41 42 3imtr4g A𝑷y<𝑸xxAyA
44 43 ex A𝑷y<𝑸xxAyA
45 44 com23 A𝑷xAy<𝑸xyA
46 45 alrimdv A𝑷xAyy<𝑸xyA
47 eluni xAzxzzA
48 prnmax z𝑷xzyzx<𝑸y
49 48 ex z𝑷xzyzx<𝑸y
50 10 49 syl6 A𝑷zAxzyzx<𝑸y
51 50 com23 A𝑷xzzAyzx<𝑸y
52 51 imp A𝑷xzzAyzx<𝑸y
53 ssrexv zAyzx<𝑸yyAx<𝑸y
54 14 53 syl zAyzx<𝑸yyAx<𝑸y
55 52 54 sylcom A𝑷xzzAyAx<𝑸y
56 55 expimpd A𝑷xzzAyAx<𝑸y
57 56 exlimdv A𝑷zxzzAyAx<𝑸y
58 47 57 biimtrid A𝑷xAyAx<𝑸y
59 46 58 jcad A𝑷xAyy<𝑸xyAyAx<𝑸y
60 59 ralrimiv A𝑷xAyy<𝑸xyAyAx<𝑸y
61 8 60 syl Ax𝑷yAy<𝑷xxAyy<𝑸xyAyAx<𝑸y
62 elnp A𝑷AA𝑸xAyy<𝑸xyAyAx<𝑸y
63 35 61 62 sylanbrc Ax𝑷yAy<𝑷xA𝑷