| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgtrinv.t |  | 
						
							| 2 |  | symgtrinv.g |  | 
						
							| 3 |  | symgtrinv.i |  | 
						
							| 4 | 2 | symggrp |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 5 3 | invoppggim |  | 
						
							| 7 |  | gimghm |  | 
						
							| 8 |  | ghmmhm |  | 
						
							| 9 | 4 6 7 8 | 4syl |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 1 2 10 | symgtrf |  | 
						
							| 12 |  | sswrd |  | 
						
							| 13 | 11 12 | ax-mp |  | 
						
							| 14 | 13 | sseli |  | 
						
							| 15 | 10 | gsumwmhm |  | 
						
							| 16 | 9 14 15 | syl2an |  | 
						
							| 17 | 10 3 | grpinvf |  | 
						
							| 18 | 4 17 | syl |  | 
						
							| 19 |  | wrdf |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 |  | fss |  | 
						
							| 22 | 20 11 21 | sylancl |  | 
						
							| 23 |  | fco |  | 
						
							| 24 | 18 22 23 | syl2an2r |  | 
						
							| 25 | 24 | ffnd |  | 
						
							| 26 | 20 | ffnd |  | 
						
							| 27 |  | fvco2 |  | 
						
							| 28 | 26 27 | sylan |  | 
						
							| 29 | 20 | ffvelcdmda |  | 
						
							| 30 | 11 29 | sselid |  | 
						
							| 31 | 2 10 3 | symginv |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 33 1 | pmtrfcnv |  | 
						
							| 35 | 29 34 | syl |  | 
						
							| 36 | 28 32 35 | 3eqtrd |  | 
						
							| 37 | 25 26 36 | eqfnfvd |  | 
						
							| 38 | 37 | oveq2d |  | 
						
							| 39 | 4 | grpmndd |  | 
						
							| 40 | 10 5 | gsumwrev |  | 
						
							| 41 | 39 14 40 | syl2an |  | 
						
							| 42 | 16 38 41 | 3eqtrd |  |