Metamath Proof Explorer


Theorem symgtrinv

Description: To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Hypotheses symgtrinv.t T=ranpmTrspD
symgtrinv.g G=SymGrpD
symgtrinv.i I=invgG
Assertion symgtrinv DVWWordTIGW=GreverseW

Proof

Step Hyp Ref Expression
1 symgtrinv.t T=ranpmTrspD
2 symgtrinv.g G=SymGrpD
3 symgtrinv.i I=invgG
4 2 symggrp DVGGrp
5 eqid opp𝑔G=opp𝑔G
6 5 3 invoppggim GGrpIGGrpIsoopp𝑔G
7 gimghm IGGrpIsoopp𝑔GIGGrpHomopp𝑔G
8 ghmmhm IGGrpHomopp𝑔GIGMndHomopp𝑔G
9 4 6 7 8 4syl DVIGMndHomopp𝑔G
10 eqid BaseG=BaseG
11 1 2 10 symgtrf TBaseG
12 sswrd TBaseGWordTWordBaseG
13 11 12 ax-mp WordTWordBaseG
14 13 sseli WWordTWWordBaseG
15 10 gsumwmhm IGMndHomopp𝑔GWWordBaseGIGW=opp𝑔GIW
16 9 14 15 syl2an DVWWordTIGW=opp𝑔GIW
17 10 3 grpinvf GGrpI:BaseGBaseG
18 4 17 syl DVI:BaseGBaseG
19 wrdf WWordTW:0..^WT
20 19 adantl DVWWordTW:0..^WT
21 fss W:0..^WTTBaseGW:0..^WBaseG
22 20 11 21 sylancl DVWWordTW:0..^WBaseG
23 fco I:BaseGBaseGW:0..^WBaseGIW:0..^WBaseG
24 18 22 23 syl2an2r DVWWordTIW:0..^WBaseG
25 24 ffnd DVWWordTIWFn0..^W
26 20 ffnd DVWWordTWFn0..^W
27 fvco2 WFn0..^Wx0..^WIWx=IWx
28 26 27 sylan DVWWordTx0..^WIWx=IWx
29 20 ffvelcdmda DVWWordTx0..^WWxT
30 11 29 sselid DVWWordTx0..^WWxBaseG
31 2 10 3 symginv WxBaseGIWx=Wx-1
32 30 31 syl DVWWordTx0..^WIWx=Wx-1
33 eqid pmTrspD=pmTrspD
34 33 1 pmtrfcnv WxTWx-1=Wx
35 29 34 syl DVWWordTx0..^WWx-1=Wx
36 28 32 35 3eqtrd DVWWordTx0..^WIWx=Wx
37 25 26 36 eqfnfvd DVWWordTIW=W
38 37 oveq2d DVWWordTopp𝑔GIW=opp𝑔GW
39 4 grpmndd DVGMnd
40 10 5 gsumwrev GMndWWordBaseGopp𝑔GW=GreverseW
41 39 14 40 syl2an DVWWordTopp𝑔GW=GreverseW
42 16 38 41 3eqtrd DVWWordTIGW=GreverseW