Metamath Proof Explorer


Theorem tgblthelfgott

Description: The ternary Goldbach conjecture is valid for all odd numbers less than 8.8 x 10^30 (actually 8.875694 x 10^30, see section 1.2.2 in Helfgott p. 4, using bgoldbachlt , ax-hgprmladder and bgoldbtbnd . (Contributed by AV, 4-Aug-2020) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion tgblthelfgott NOdd7<NN<881029NGoldbachOdd

Proof

Step Hyp Ref Expression
1 ax-hgprmladder d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fi
2 1nn0 10
3 1nn 1
4 2 3 decnncl 11
5 4 nnzi 11
6 8nn0 80
7 8nn 8
8 6 7 decnncl 88
9 10nn 10
10 2nn0 20
11 9nn 9
12 10 11 decnncl 29
13 12 nnnn0i 290
14 nnexpcl 102901029
15 9 13 14 mp2an 1029
16 8 15 nnmulcli 881029
17 16 nnzi 881029
18 1re 1
19 8 nnrei 88
20 18 19 pm3.2i 188
21 0le1 01
22 1lt10 1<10
23 7 6 2 22 declti 1<88
24 21 23 pm3.2i 011<88
25 nnexpcl 1010101
26 9 2 25 mp2an 101
27 26 nnrei 101
28 15 nnrei 1029
29 27 28 pm3.2i 1011029
30 0re 0
31 10re 10
32 10pos 0<10
33 30 31 32 ltleii 010
34 9 nncni 10
35 exp1 10101=10
36 34 35 ax-mp 101=10
37 33 36 breqtrri 0101
38 1z 1
39 12 nnzi 29
40 31 38 39 3pm3.2i 10129
41 2nn 2
42 9nn0 90
43 41 42 2 22 declti 1<29
44 22 43 pm3.2i 1<101<29
45 ltexp2a 101291<101<29101<1029
46 40 44 45 mp2an 101<1029
47 37 46 pm3.2i 0101101<1029
48 ltmul12a 188011<8810110290101101<10291101<881029
49 20 24 29 47 48 mp4an 1101<881029
50 26 nnzi 101
51 zmulcl 11011101
52 38 50 51 mp2an 1101
53 zltp1le 11018810291101<8810291101+1881029
54 52 17 53 mp2an 1101<8810291101+1881029
55 1t10e1p1e11 11=1101+1
56 55 eqcomi 1101+1=11
57 56 breq1i 1101+188102911881029
58 54 57 bitri 1101<88102911881029
59 49 58 mpbi 11881029
60 eluz2 881029111188102911881029
61 5 17 59 60 mpbir3an 88102911
62 61 a1i d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<88102988102911
63 4nn 4
64 2 7 decnncl 18
65 64 nnnn0i 180
66 nnexpcl 101801018
67 9 65 66 mp2an 1018
68 63 67 nnmulcli 41018
69 68 nnzi 41018
70 4re 4
71 18 70 pm3.2i 14
72 1lt4 1<4
73 21 72 pm3.2i 011<4
74 67 nnrei 1018
75 27 74 pm3.2i 1011018
76 64 nnzi 18
77 31 38 76 3pm3.2i 10118
78 3 6 2 22 declti 1<18
79 22 78 pm3.2i 1<101<18
80 ltexp2a 101181<101<18101<1018
81 77 79 80 mp2an 101<1018
82 37 81 pm3.2i 0101101<1018
83 ltmul12a 14011<410110180101101<10181101<41018
84 71 73 75 82 83 mp4an 1101<41018
85 4z 4
86 67 nnzi 1018
87 zmulcl 4101841018
88 85 86 87 mp2an 41018
89 zltp1le 1101410181101<410181101+141018
90 52 88 89 mp2an 1101<410181101+141018
91 56 breq1i 1101+1410181141018
92 90 91 bitri 1101<410181141018
93 84 92 mpbi 1141018
94 eluz2 410181111410181141018
95 5 69 93 94 mpbir3an 4101811
96 95 a1i d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<8810294101811
97 simpl nEven4<nn<41018nEven
98 simprl nEven4<nn<410184<n
99 evenz nEvenn
100 99 zred nEvenn
101 68 nnrei 41018
102 ltle n41018n<41018n41018
103 100 101 102 sylancl nEvenn<41018n41018
104 103 a1d nEven4<nn<41018n41018
105 104 imp32 nEven4<nn<41018n41018
106 ax-bgbltosilva nEven4<nn41018nGoldbachEven
107 97 98 105 106 syl3anc nEven4<nn<41018nGoldbachEven
108 107 ex nEven4<nn<41018nGoldbachEven
109 108 a1i d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029nEven4<nn<41018nGoldbachEven
110 109 ralrimiv d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029nEven4<nn<41018nGoldbachEven
111 simpl d3fRePartdd3
112 111 ad2antrr d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029d3
113 simpr d3fRePartdfRePartd
114 113 ad2antrr d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029fRePartd
115 simpr f0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fii0..^dfi2fi+1fi<4101844<fi+1fi
116 115 ad2antlr d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029i0..^dfi2fi+1fi<4101844<fi+1fi
117 simpl1 f0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fif0=7
118 117 ad2antlr d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029f0=7
119 simpl2 f0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fif1=13
120 119 ad2antlr d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029f1=13
121 6 11 decnncl 89
122 121 nnrei 89
123 15 nngt0i 0<1029
124 28 123 pm3.2i 10290<1029
125 19 122 124 3pm3.2i 888910290<1029
126 8lt9 8<9
127 6 6 11 126 declt 88<89
128 ltmul1a 888910290<102988<89881029<891029
129 125 127 128 mp2an 881029<891029
130 breq2 fd=891029881029<fd881029<891029
131 129 130 mpbiri fd=891029881029<fd
132 131 3ad2ant3 f0=7f1=13fd=891029881029<fd
133 132 adantr f0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fi881029<fd
134 133 ad2antlr d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029881029<fd
135 121 15 nnmulcli 891029
136 135 nnrei 891029
137 eleq1 fd=891029fd891029
138 136 137 mpbiri fd=891029fd
139 138 3ad2ant3 f0=7f1=13fd=891029fd
140 139 adantr f0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fifd
141 140 ad2antlr d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029fd
142 62 96 110 112 114 116 118 120 134 141 bgoldbtbnd d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029nOdd7<nn<881029nGoldbachOdd
143 142 exp31 d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029nOdd7<nn<881029nGoldbachOdd
144 143 rexlimivv d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029nOdd7<nn<881029nGoldbachOdd
145 breq2 n=N7<n7<N
146 breq1 n=Nn<881029N<881029
147 145 146 anbi12d n=N7<nn<8810297<NN<881029
148 eleq1 n=NnGoldbachOddNGoldbachOdd
149 147 148 imbi12d n=N7<nn<881029nGoldbachOdd7<NN<881029NGoldbachOdd
150 149 rspcv NOddnOdd7<nn<881029nGoldbachOdd7<NN<881029NGoldbachOdd
151 150 com23 NOdd7<NN<881029nOdd7<nn<881029nGoldbachOddNGoldbachOdd
152 151 3impib NOdd7<NN<881029nOdd7<nn<881029nGoldbachOddNGoldbachOdd
153 144 152 sylcom d3fRePartdf0=7f1=13fd=891029i0..^dfi2fi+1fi<4101844<fi+1fiNOdd7<NN<881029NGoldbachOdd
154 1 153 ax-mp NOdd7<NN<881029NGoldbachOdd