Metamath Proof Explorer


Theorem tgblthelfgott

Description: The ternary Goldbach conjecture is valid for all odd numbers less than 8.8 x 10^30 (actually 8.875694 x 10^30, see section 1.2.2 in Helfgott p. 4, using bgoldbachlt , ax-hgprmladder and bgoldbtbnd . (Contributed by AV, 4-Aug-2020) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion tgblthelfgott N Odd 7 < N N < 88 10 29 N GoldbachOdd

Proof

Step Hyp Ref Expression
1 ax-hgprmladder d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i
2 1nn0 1 0
3 1nn 1
4 2 3 decnncl 11
5 4 nnzi 11
6 8nn0 8 0
7 8nn 8
8 6 7 decnncl 88
9 10nn 10
10 2nn0 2 0
11 9nn 9
12 10 11 decnncl 29
13 12 nnnn0i 29 0
14 nnexpcl 10 29 0 10 29
15 9 13 14 mp2an 10 29
16 8 15 nnmulcli 88 10 29
17 16 nnzi 88 10 29
18 1re 1
19 8 nnrei 88
20 18 19 pm3.2i 1 88
21 0le1 0 1
22 1lt10 1 < 10
23 7 6 2 22 declti 1 < 88
24 21 23 pm3.2i 0 1 1 < 88
25 nnexpcl 10 1 0 10 1
26 9 2 25 mp2an 10 1
27 26 nnrei 10 1
28 15 nnrei 10 29
29 27 28 pm3.2i 10 1 10 29
30 0re 0
31 10re 10
32 10pos 0 < 10
33 30 31 32 ltleii 0 10
34 9 nncni 10
35 exp1 10 10 1 = 10
36 34 35 ax-mp 10 1 = 10
37 33 36 breqtrri 0 10 1
38 1z 1
39 12 nnzi 29
40 31 38 39 3pm3.2i 10 1 29
41 2nn 2
42 9nn0 9 0
43 41 42 2 22 declti 1 < 29
44 22 43 pm3.2i 1 < 10 1 < 29
45 ltexp2a 10 1 29 1 < 10 1 < 29 10 1 < 10 29
46 40 44 45 mp2an 10 1 < 10 29
47 37 46 pm3.2i 0 10 1 10 1 < 10 29
48 ltmul12a 1 88 0 1 1 < 88 10 1 10 29 0 10 1 10 1 < 10 29 1 10 1 < 88 10 29
49 20 24 29 47 48 mp4an 1 10 1 < 88 10 29
50 26 nnzi 10 1
51 zmulcl 1 10 1 1 10 1
52 38 50 51 mp2an 1 10 1
53 zltp1le 1 10 1 88 10 29 1 10 1 < 88 10 29 1 10 1 + 1 88 10 29
54 52 17 53 mp2an 1 10 1 < 88 10 29 1 10 1 + 1 88 10 29
55 1t10e1p1e11 11 = 1 10 1 + 1
56 55 eqcomi 1 10 1 + 1 = 11
57 56 breq1i 1 10 1 + 1 88 10 29 11 88 10 29
58 54 57 bitri 1 10 1 < 88 10 29 11 88 10 29
59 49 58 mpbi 11 88 10 29
60 eluz2 88 10 29 11 11 88 10 29 11 88 10 29
61 5 17 59 60 mpbir3an 88 10 29 11
62 61 a1i d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 88 10 29 11
63 4nn 4
64 2 7 decnncl 18
65 64 nnnn0i 18 0
66 nnexpcl 10 18 0 10 18
67 9 65 66 mp2an 10 18
68 63 67 nnmulcli 4 10 18
69 68 nnzi 4 10 18
70 4re 4
71 18 70 pm3.2i 1 4
72 1lt4 1 < 4
73 21 72 pm3.2i 0 1 1 < 4
74 67 nnrei 10 18
75 27 74 pm3.2i 10 1 10 18
76 64 nnzi 18
77 31 38 76 3pm3.2i 10 1 18
78 3 6 2 22 declti 1 < 18
79 22 78 pm3.2i 1 < 10 1 < 18
80 ltexp2a 10 1 18 1 < 10 1 < 18 10 1 < 10 18
81 77 79 80 mp2an 10 1 < 10 18
82 37 81 pm3.2i 0 10 1 10 1 < 10 18
83 ltmul12a 1 4 0 1 1 < 4 10 1 10 18 0 10 1 10 1 < 10 18 1 10 1 < 4 10 18
84 71 73 75 82 83 mp4an 1 10 1 < 4 10 18
85 4z 4
86 67 nnzi 10 18
87 zmulcl 4 10 18 4 10 18
88 85 86 87 mp2an 4 10 18
89 zltp1le 1 10 1 4 10 18 1 10 1 < 4 10 18 1 10 1 + 1 4 10 18
90 52 88 89 mp2an 1 10 1 < 4 10 18 1 10 1 + 1 4 10 18
91 56 breq1i 1 10 1 + 1 4 10 18 11 4 10 18
92 90 91 bitri 1 10 1 < 4 10 18 11 4 10 18
93 84 92 mpbi 11 4 10 18
94 eluz2 4 10 18 11 11 4 10 18 11 4 10 18
95 5 69 93 94 mpbir3an 4 10 18 11
96 95 a1i d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 4 10 18 11
97 simpl n Even 4 < n n < 4 10 18 n Even
98 simprl n Even 4 < n n < 4 10 18 4 < n
99 evenz n Even n
100 99 zred n Even n
101 68 nnrei 4 10 18
102 ltle n 4 10 18 n < 4 10 18 n 4 10 18
103 100 101 102 sylancl n Even n < 4 10 18 n 4 10 18
104 103 a1d n Even 4 < n n < 4 10 18 n 4 10 18
105 104 imp32 n Even 4 < n n < 4 10 18 n 4 10 18
106 ax-bgbltosilva n Even 4 < n n 4 10 18 n GoldbachEven
107 97 98 105 106 syl3anc n Even 4 < n n < 4 10 18 n GoldbachEven
108 107 ex n Even 4 < n n < 4 10 18 n GoldbachEven
109 108 a1i d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 n Even 4 < n n < 4 10 18 n GoldbachEven
110 109 ralrimiv d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 n Even 4 < n n < 4 10 18 n GoldbachEven
111 simpl d 3 f RePart d d 3
112 111 ad2antrr d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 d 3
113 simpr d 3 f RePart d f RePart d
114 113 ad2antrr d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 f RePart d
115 simpr f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i
116 115 ad2antlr d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i
117 simpl1 f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i f 0 = 7
118 117 ad2antlr d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 f 0 = 7
119 simpl2 f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i f 1 = 13
120 119 ad2antlr d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 f 1 = 13
121 6 11 decnncl 89
122 121 nnrei 89
123 15 nngt0i 0 < 10 29
124 28 123 pm3.2i 10 29 0 < 10 29
125 19 122 124 3pm3.2i 88 89 10 29 0 < 10 29
126 8lt9 8 < 9
127 6 6 11 126 declt 88 < 89
128 ltmul1a 88 89 10 29 0 < 10 29 88 < 89 88 10 29 < 89 10 29
129 125 127 128 mp2an 88 10 29 < 89 10 29
130 breq2 f d = 89 10 29 88 10 29 < f d 88 10 29 < 89 10 29
131 129 130 mpbiri f d = 89 10 29 88 10 29 < f d
132 131 3ad2ant3 f 0 = 7 f 1 = 13 f d = 89 10 29 88 10 29 < f d
133 132 adantr f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i 88 10 29 < f d
134 133 ad2antlr d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 88 10 29 < f d
135 121 15 nnmulcli 89 10 29
136 135 nnrei 89 10 29
137 eleq1 f d = 89 10 29 f d 89 10 29
138 136 137 mpbiri f d = 89 10 29 f d
139 138 3ad2ant3 f 0 = 7 f 1 = 13 f d = 89 10 29 f d
140 139 adantr f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i f d
141 140 ad2antlr d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 f d
142 62 96 110 112 114 116 118 120 134 141 bgoldbtbnd d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd
143 142 exp31 d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd
144 143 rexlimivv d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd
145 breq2 n = N 7 < n 7 < N
146 breq1 n = N n < 88 10 29 N < 88 10 29
147 145 146 anbi12d n = N 7 < n n < 88 10 29 7 < N N < 88 10 29
148 eleq1 n = N n GoldbachOdd N GoldbachOdd
149 147 148 imbi12d n = N 7 < n n < 88 10 29 n GoldbachOdd 7 < N N < 88 10 29 N GoldbachOdd
150 149 rspcv N Odd n Odd 7 < n n < 88 10 29 n GoldbachOdd 7 < N N < 88 10 29 N GoldbachOdd
151 150 com23 N Odd 7 < N N < 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd N GoldbachOdd
152 151 3impib N Odd 7 < N N < 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd N GoldbachOdd
153 144 152 sylcom d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i N Odd 7 < N N < 88 10 29 N GoldbachOdd
154 1 153 ax-mp N Odd 7 < N N < 88 10 29 N GoldbachOdd