Metamath Proof Explorer


Theorem tgcgrxfr

Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of Schwabhauser p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019)

Ref Expression
Hypotheses tgcgrxfr.p P=BaseG
tgcgrxfr.m -˙=distG
tgcgrxfr.i I=ItvG
tgcgrxfr.r ˙=𝒢G
tgcgrxfr.g φG𝒢Tarski
tgcgrxfr.a φAP
tgcgrxfr.b φBP
tgcgrxfr.c φCP
tgcgrxfr.d φDP
tgcgrxfr.f φFP
tgcgrxfr.1 φBAIC
tgcgrxfr.2 φA-˙C=D-˙F
Assertion tgcgrxfr φePeDIF⟨“ABC”⟩˙⟨“DeF”⟩

Proof

Step Hyp Ref Expression
1 tgcgrxfr.p P=BaseG
2 tgcgrxfr.m -˙=distG
3 tgcgrxfr.i I=ItvG
4 tgcgrxfr.r ˙=𝒢G
5 tgcgrxfr.g φG𝒢Tarski
6 tgcgrxfr.a φAP
7 tgcgrxfr.b φBP
8 tgcgrxfr.c φCP
9 tgcgrxfr.d φDP
10 tgcgrxfr.f φFP
11 tgcgrxfr.1 φBAIC
12 tgcgrxfr.2 φA-˙C=D-˙F
13 6 adantr φP=1AP
14 5 adantr φP=1G𝒢Tarski
15 9 adantr φP=1DP
16 10 adantr φP=1FP
17 simpr φP=1P=1
18 1 2 3 14 13 15 16 17 tgldim0itv φP=1ADIF
19 7 adantr φP=1BP
20 8 adantr φP=1CP
21 1 2 3 14 13 19 15 17 13 tgldim0cgr φP=1A-˙B=D-˙A
22 1 2 3 14 19 20 13 17 16 tgldim0cgr φP=1B-˙C=A-˙F
23 1 2 3 14 20 13 16 17 15 tgldim0cgr φP=1C-˙A=F-˙D
24 1 2 4 14 13 19 20 15 13 16 21 22 23 trgcgr φP=1⟨“ABC”⟩˙⟨“DAF”⟩
25 eleq1 e=AeDIFADIF
26 s3eq2 e=A⟨“DeF”⟩=⟨“DAF”⟩
27 26 breq2d e=A⟨“ABC”⟩˙⟨“DeF”⟩⟨“ABC”⟩˙⟨“DAF”⟩
28 25 27 anbi12d e=AeDIF⟨“ABC”⟩˙⟨“DeF”⟩ADIF⟨“ABC”⟩˙⟨“DAF”⟩
29 28 rspcev APADIF⟨“ABC”⟩˙⟨“DAF”⟩ePeDIF⟨“ABC”⟩˙⟨“DeF”⟩
30 13 18 24 29 syl12anc φP=1ePeDIF⟨“ABC”⟩˙⟨“DeF”⟩
31 5 ad3antrrr φ2PgPDFIgDgG𝒢Tarski
32 simplr φ2PgPDFIgDggP
33 9 ad3antrrr φ2PgPDFIgDgDP
34 6 ad3antrrr φ2PgPDFIgDgAP
35 7 ad3antrrr φ2PgPDFIgDgBP
36 1 2 3 31 32 33 34 35 axtgsegcon φ2PgPDFIgDgePDgIeD-˙e=A-˙B
37 5 ad7antr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CG𝒢Tarski
38 32 ad2antrr φ2PgPDFIgDgePDgIeD-˙e=A-˙BgP
39 38 ad2antrr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CgP
40 9 ad7antr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CDP
41 simplr φ2PgPDFIgDgePDgIeD-˙e=A-˙BeP
42 41 ad2antrr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CeP
43 simplr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CfP
44 simpllr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CDgIeD-˙e=A-˙B
45 44 simpld φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CDgIe
46 simprl φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CegIf
47 1 2 3 37 39 40 42 43 45 46 tgbtwnexch3 φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CeDIf
48 6 ad7antr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CAP
49 8 ad7antr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CCP
50 10 ad7antr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CFP
51 simp-5r φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CDFIgDg
52 51 simprd φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CDg
53 52 necomd φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CgD
54 1 2 3 37 39 40 42 43 45 46 tgbtwnexch φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CDgIf
55 51 simpld φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CDFIg
56 1 2 3 37 50 40 39 55 tgbtwncom φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CDgIF
57 7 ad7antr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CBP
58 11 ad7antr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CBAIC
59 44 simprd φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CD-˙e=A-˙B
60 simprr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙Ce-˙f=B-˙C
61 1 2 3 37 40 42 43 48 57 49 47 58 59 60 tgcgrextend φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CD-˙f=A-˙C
62 12 ad7antr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CA-˙C=D-˙F
63 62 eqcomd φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CD-˙F=A-˙C
64 1 2 3 37 40 48 49 39 43 50 53 54 56 61 63 tgsegconeq φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙Cf=F
65 64 oveq2d φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CDIf=DIF
66 47 65 eleqtrd φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CeDIF
67 59 eqcomd φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CA-˙B=D-˙e
68 64 oveq2d φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙Ce-˙f=e-˙F
69 60 68 eqtr3d φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CB-˙C=e-˙F
70 1 2 3 5 6 8 9 10 12 tgcgrcomlr φC-˙A=F-˙D
71 70 ad7antr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CC-˙A=F-˙D
72 1 2 4 37 48 57 49 40 42 50 67 69 71 trgcgr φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙C⟨“ABC”⟩˙⟨“DeF”⟩
73 66 72 jca φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙CeDIF⟨“ABC”⟩˙⟨“DeF”⟩
74 31 ad2antrr φ2PgPDFIgDgePDgIeD-˙e=A-˙BG𝒢Tarski
75 35 ad2antrr φ2PgPDFIgDgePDgIeD-˙e=A-˙BBP
76 8 ad5antr φ2PgPDFIgDgePDgIeD-˙e=A-˙BCP
77 1 2 3 74 38 41 75 76 axtgsegcon φ2PgPDFIgDgePDgIeD-˙e=A-˙BfPegIfe-˙f=B-˙C
78 73 77 r19.29a φ2PgPDFIgDgePDgIeD-˙e=A-˙BeDIF⟨“ABC”⟩˙⟨“DeF”⟩
79 78 ex φ2PgPDFIgDgePDgIeD-˙e=A-˙BeDIF⟨“ABC”⟩˙⟨“DeF”⟩
80 79 reximdva φ2PgPDFIgDgePDgIeD-˙e=A-˙BePeDIF⟨“ABC”⟩˙⟨“DeF”⟩
81 36 80 mpd φ2PgPDFIgDgePeDIF⟨“ABC”⟩˙⟨“DeF”⟩
82 5 adantr φ2PG𝒢Tarski
83 10 adantr φ2PFP
84 9 adantr φ2PDP
85 simpr φ2P2P
86 1 2 3 82 83 84 85 tgbtwndiff φ2PgPDFIgDg
87 81 86 r19.29a φ2PePeDIF⟨“ABC”⟩˙⟨“DeF”⟩
88 1 6 tgldimor φP=12P
89 30 87 88 mpjaodan φePeDIF⟨“ABC”⟩˙⟨“DeF”⟩