Metamath Proof Explorer


Theorem trlcoabs2N

Description: Absorption of the trace of a composition. (Contributed by NM, 29-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses trlcoabs.l ˙ = K
trlcoabs.j ˙ = join K
trlcoabs.a A = Atoms K
trlcoabs.h H = LHyp K
trlcoabs.t T = LTrn K W
trlcoabs.r R = trL K W
Assertion trlcoabs2N K HL W H F T G T P A ¬ P ˙ W F P ˙ R G F -1 = F P ˙ G P

Proof

Step Hyp Ref Expression
1 trlcoabs.l ˙ = K
2 trlcoabs.j ˙ = join K
3 trlcoabs.a A = Atoms K
4 trlcoabs.h H = LHyp K
5 trlcoabs.t T = LTrn K W
6 trlcoabs.r R = trL K W
7 simp1 K HL W H F T G T P A ¬ P ˙ W K HL W H
8 simp2r K HL W H F T G T P A ¬ P ˙ W G T
9 simp2l K HL W H F T G T P A ¬ P ˙ W F T
10 4 5 ltrncnv K HL W H F T F -1 T
11 7 9 10 syl2anc K HL W H F T G T P A ¬ P ˙ W F -1 T
12 4 5 ltrnco K HL W H G T F -1 T G F -1 T
13 7 8 11 12 syl3anc K HL W H F T G T P A ¬ P ˙ W G F -1 T
14 1 3 4 5 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
15 14 3adant2r K HL W H F T G T P A ¬ P ˙ W F P A ¬ F P ˙ W
16 eqid meet K = meet K
17 1 2 16 3 4 5 6 trlval2 K HL W H G F -1 T F P A ¬ F P ˙ W R G F -1 = F P ˙ G F -1 F P meet K W
18 7 13 15 17 syl3anc K HL W H F T G T P A ¬ P ˙ W R G F -1 = F P ˙ G F -1 F P meet K W
19 18 oveq2d K HL W H F T G T P A ¬ P ˙ W F P ˙ R G F -1 = F P ˙ F P ˙ G F -1 F P meet K W
20 simp1l K HL W H F T G T P A ¬ P ˙ W K HL
21 simp3l K HL W H F T G T P A ¬ P ˙ W P A
22 1 3 4 5 ltrnat K HL W H F T P A F P A
23 7 9 21 22 syl3anc K HL W H F T G T P A ¬ P ˙ W F P A
24 1 3 4 5 ltrnat K HL W H G F -1 T F P A G F -1 F P A
25 7 13 23 24 syl3anc K HL W H F T G T P A ¬ P ˙ W G F -1 F P A
26 eqid Base K = Base K
27 26 2 3 hlatjcl K HL F P A G F -1 F P A F P ˙ G F -1 F P Base K
28 20 23 25 27 syl3anc K HL W H F T G T P A ¬ P ˙ W F P ˙ G F -1 F P Base K
29 simp1r K HL W H F T G T P A ¬ P ˙ W W H
30 26 4 lhpbase W H W Base K
31 29 30 syl K HL W H F T G T P A ¬ P ˙ W W Base K
32 1 2 3 hlatlej1 K HL F P A G F -1 F P A F P ˙ F P ˙ G F -1 F P
33 20 23 25 32 syl3anc K HL W H F T G T P A ¬ P ˙ W F P ˙ F P ˙ G F -1 F P
34 26 1 2 16 3 atmod3i1 K HL F P A F P ˙ G F -1 F P Base K W Base K F P ˙ F P ˙ G F -1 F P F P ˙ F P ˙ G F -1 F P meet K W = F P ˙ G F -1 F P meet K F P ˙ W
35 20 23 28 31 33 34 syl131anc K HL W H F T G T P A ¬ P ˙ W F P ˙ F P ˙ G F -1 F P meet K W = F P ˙ G F -1 F P meet K F P ˙ W
36 1 3 4 5 ltrncoval K HL W H G F -1 T F T P A G F -1 F P = G F -1 F P
37 7 13 9 21 36 syl121anc K HL W H F T G T P A ¬ P ˙ W G F -1 F P = G F -1 F P
38 coass G F -1 F = G F -1 F
39 26 4 5 ltrn1o K HL W H F T F : Base K 1-1 onto Base K
40 7 9 39 syl2anc K HL W H F T G T P A ¬ P ˙ W F : Base K 1-1 onto Base K
41 f1ococnv1 F : Base K 1-1 onto Base K F -1 F = I Base K
42 40 41 syl K HL W H F T G T P A ¬ P ˙ W F -1 F = I Base K
43 42 coeq2d K HL W H F T G T P A ¬ P ˙ W G F -1 F = G I Base K
44 26 4 5 ltrn1o K HL W H G T G : Base K 1-1 onto Base K
45 7 8 44 syl2anc K HL W H F T G T P A ¬ P ˙ W G : Base K 1-1 onto Base K
46 f1of G : Base K 1-1 onto Base K G : Base K Base K
47 fcoi1 G : Base K Base K G I Base K = G
48 45 46 47 3syl K HL W H F T G T P A ¬ P ˙ W G I Base K = G
49 43 48 eqtrd K HL W H F T G T P A ¬ P ˙ W G F -1 F = G
50 38 49 eqtrid K HL W H F T G T P A ¬ P ˙ W G F -1 F = G
51 50 fveq1d K HL W H F T G T P A ¬ P ˙ W G F -1 F P = G P
52 37 51 eqtr3d K HL W H F T G T P A ¬ P ˙ W G F -1 F P = G P
53 52 oveq2d K HL W H F T G T P A ¬ P ˙ W F P ˙ G F -1 F P = F P ˙ G P
54 eqid 1. K = 1. K
55 1 2 54 3 4 lhpjat2 K HL W H F P A ¬ F P ˙ W F P ˙ W = 1. K
56 7 15 55 syl2anc K HL W H F T G T P A ¬ P ˙ W F P ˙ W = 1. K
57 53 56 oveq12d K HL W H F T G T P A ¬ P ˙ W F P ˙ G F -1 F P meet K F P ˙ W = F P ˙ G P meet K 1. K
58 hlol K HL K OL
59 20 58 syl K HL W H F T G T P A ¬ P ˙ W K OL
60 1 3 4 5 ltrnat K HL W H G T P A G P A
61 7 8 21 60 syl3anc K HL W H F T G T P A ¬ P ˙ W G P A
62 26 2 3 hlatjcl K HL F P A G P A F P ˙ G P Base K
63 20 23 61 62 syl3anc K HL W H F T G T P A ¬ P ˙ W F P ˙ G P Base K
64 26 16 54 olm11 K OL F P ˙ G P Base K F P ˙ G P meet K 1. K = F P ˙ G P
65 59 63 64 syl2anc K HL W H F T G T P A ¬ P ˙ W F P ˙ G P meet K 1. K = F P ˙ G P
66 57 65 eqtrd K HL W H F T G T P A ¬ P ˙ W F P ˙ G F -1 F P meet K F P ˙ W = F P ˙ G P
67 19 35 66 3eqtrd K HL W H F T G T P A ¬ P ˙ W F P ˙ R G F -1 = F P ˙ G P