Metamath Proof Explorer


Theorem trlcoabs2N

Description: Absorption of the trace of a composition. (Contributed by NM, 29-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses trlcoabs.l ˙=K
trlcoabs.j ˙=joinK
trlcoabs.a A=AtomsK
trlcoabs.h H=LHypK
trlcoabs.t T=LTrnKW
trlcoabs.r R=trLKW
Assertion trlcoabs2N KHLWHFTGTPA¬P˙WFP˙RGF-1=FP˙GP

Proof

Step Hyp Ref Expression
1 trlcoabs.l ˙=K
2 trlcoabs.j ˙=joinK
3 trlcoabs.a A=AtomsK
4 trlcoabs.h H=LHypK
5 trlcoabs.t T=LTrnKW
6 trlcoabs.r R=trLKW
7 simp1 KHLWHFTGTPA¬P˙WKHLWH
8 simp2r KHLWHFTGTPA¬P˙WGT
9 simp2l KHLWHFTGTPA¬P˙WFT
10 4 5 ltrncnv KHLWHFTF-1T
11 7 9 10 syl2anc KHLWHFTGTPA¬P˙WF-1T
12 4 5 ltrnco KHLWHGTF-1TGF-1T
13 7 8 11 12 syl3anc KHLWHFTGTPA¬P˙WGF-1T
14 1 3 4 5 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
15 14 3adant2r KHLWHFTGTPA¬P˙WFPA¬FP˙W
16 eqid meetK=meetK
17 1 2 16 3 4 5 6 trlval2 KHLWHGF-1TFPA¬FP˙WRGF-1=FP˙GF-1FPmeetKW
18 7 13 15 17 syl3anc KHLWHFTGTPA¬P˙WRGF-1=FP˙GF-1FPmeetKW
19 18 oveq2d KHLWHFTGTPA¬P˙WFP˙RGF-1=FP˙FP˙GF-1FPmeetKW
20 simp1l KHLWHFTGTPA¬P˙WKHL
21 simp3l KHLWHFTGTPA¬P˙WPA
22 1 3 4 5 ltrnat KHLWHFTPAFPA
23 7 9 21 22 syl3anc KHLWHFTGTPA¬P˙WFPA
24 1 3 4 5 ltrnat KHLWHGF-1TFPAGF-1FPA
25 7 13 23 24 syl3anc KHLWHFTGTPA¬P˙WGF-1FPA
26 eqid BaseK=BaseK
27 26 2 3 hlatjcl KHLFPAGF-1FPAFP˙GF-1FPBaseK
28 20 23 25 27 syl3anc KHLWHFTGTPA¬P˙WFP˙GF-1FPBaseK
29 simp1r KHLWHFTGTPA¬P˙WWH
30 26 4 lhpbase WHWBaseK
31 29 30 syl KHLWHFTGTPA¬P˙WWBaseK
32 1 2 3 hlatlej1 KHLFPAGF-1FPAFP˙FP˙GF-1FP
33 20 23 25 32 syl3anc KHLWHFTGTPA¬P˙WFP˙FP˙GF-1FP
34 26 1 2 16 3 atmod3i1 KHLFPAFP˙GF-1FPBaseKWBaseKFP˙FP˙GF-1FPFP˙FP˙GF-1FPmeetKW=FP˙GF-1FPmeetKFP˙W
35 20 23 28 31 33 34 syl131anc KHLWHFTGTPA¬P˙WFP˙FP˙GF-1FPmeetKW=FP˙GF-1FPmeetKFP˙W
36 1 3 4 5 ltrncoval KHLWHGF-1TFTPAGF-1FP=GF-1FP
37 7 13 9 21 36 syl121anc KHLWHFTGTPA¬P˙WGF-1FP=GF-1FP
38 coass GF-1F=GF-1F
39 26 4 5 ltrn1o KHLWHFTF:BaseK1-1 ontoBaseK
40 7 9 39 syl2anc KHLWHFTGTPA¬P˙WF:BaseK1-1 ontoBaseK
41 f1ococnv1 F:BaseK1-1 ontoBaseKF-1F=IBaseK
42 40 41 syl KHLWHFTGTPA¬P˙WF-1F=IBaseK
43 42 coeq2d KHLWHFTGTPA¬P˙WGF-1F=GIBaseK
44 26 4 5 ltrn1o KHLWHGTG:BaseK1-1 ontoBaseK
45 7 8 44 syl2anc KHLWHFTGTPA¬P˙WG:BaseK1-1 ontoBaseK
46 f1of G:BaseK1-1 ontoBaseKG:BaseKBaseK
47 fcoi1 G:BaseKBaseKGIBaseK=G
48 45 46 47 3syl KHLWHFTGTPA¬P˙WGIBaseK=G
49 43 48 eqtrd KHLWHFTGTPA¬P˙WGF-1F=G
50 38 49 eqtrid KHLWHFTGTPA¬P˙WGF-1F=G
51 50 fveq1d KHLWHFTGTPA¬P˙WGF-1FP=GP
52 37 51 eqtr3d KHLWHFTGTPA¬P˙WGF-1FP=GP
53 52 oveq2d KHLWHFTGTPA¬P˙WFP˙GF-1FP=FP˙GP
54 eqid 1.K=1.K
55 1 2 54 3 4 lhpjat2 KHLWHFPA¬FP˙WFP˙W=1.K
56 7 15 55 syl2anc KHLWHFTGTPA¬P˙WFP˙W=1.K
57 53 56 oveq12d KHLWHFTGTPA¬P˙WFP˙GF-1FPmeetKFP˙W=FP˙GPmeetK1.K
58 hlol KHLKOL
59 20 58 syl KHLWHFTGTPA¬P˙WKOL
60 1 3 4 5 ltrnat KHLWHGTPAGPA
61 7 8 21 60 syl3anc KHLWHFTGTPA¬P˙WGPA
62 26 2 3 hlatjcl KHLFPAGPAFP˙GPBaseK
63 20 23 61 62 syl3anc KHLWHFTGTPA¬P˙WFP˙GPBaseK
64 26 16 54 olm11 KOLFP˙GPBaseKFP˙GPmeetK1.K=FP˙GP
65 59 63 64 syl2anc KHLWHFTGTPA¬P˙WFP˙GPmeetK1.K=FP˙GP
66 57 65 eqtrd KHLWHFTGTPA¬P˙WFP˙GF-1FPmeetKFP˙W=FP˙GP
67 19 35 66 3eqtrd KHLWHFTGTPA¬P˙WFP˙RGF-1=FP˙GP