| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tsmsid.b |  | 
						
							| 2 |  | tsmsid.z |  | 
						
							| 3 |  | tsmsid.1 |  | 
						
							| 4 |  | tsmsid.2 |  | 
						
							| 5 |  | tsmsid.a |  | 
						
							| 6 |  | tsmsid.f |  | 
						
							| 7 |  | tsmsid.w |  | 
						
							| 8 |  | tsmsgsum.j |  | 
						
							| 9 | 1 8 | istps |  | 
						
							| 10 | 4 9 | sylib |  | 
						
							| 11 |  | toponuni |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 12 | eleq2d |  | 
						
							| 14 |  | elfpw |  | 
						
							| 15 | 14 | simplbi |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 |  | suppssdm |  | 
						
							| 18 | 17 6 | fssdm |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 | 16 19 | unssd |  | 
						
							| 21 |  | elinel2 |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 | 7 | ad2antrr |  | 
						
							| 24 | 23 | fsuppimpd |  | 
						
							| 25 |  | unfi |  | 
						
							| 26 | 22 24 25 | syl2anc |  | 
						
							| 27 |  | elfpw |  | 
						
							| 28 | 20 26 27 | sylanbrc |  | 
						
							| 29 |  | ssun1 |  | 
						
							| 30 |  | id |  | 
						
							| 31 | 29 30 | sseqtrrid |  | 
						
							| 32 |  | pm5.5 |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 |  | reseq2 |  | 
						
							| 35 | 34 | oveq2d |  | 
						
							| 36 | 35 | eleq1d |  | 
						
							| 37 | 33 36 | bitrd |  | 
						
							| 38 | 37 | rspcv |  | 
						
							| 39 | 28 38 | syl |  | 
						
							| 40 | 3 | ad2antrr |  | 
						
							| 41 | 5 | ad2antrr |  | 
						
							| 42 | 6 | ad2antrr |  | 
						
							| 43 |  | ssun2 |  | 
						
							| 44 | 43 | a1i |  | 
						
							| 45 | 1 2 40 41 42 44 23 | gsumres |  | 
						
							| 46 | 45 | eleq1d |  | 
						
							| 47 | 39 46 | sylibd |  | 
						
							| 48 | 47 | rexlimdva |  | 
						
							| 49 | 7 | fsuppimpd |  | 
						
							| 50 |  | elfpw |  | 
						
							| 51 | 18 49 50 | sylanbrc |  | 
						
							| 52 | 3 | ad2antrr |  | 
						
							| 53 | 5 | ad2antrr |  | 
						
							| 54 | 6 | ad2antrr |  | 
						
							| 55 |  | simprr |  | 
						
							| 56 | 7 | ad2antrr |  | 
						
							| 57 | 1 2 52 53 54 55 56 | gsumres |  | 
						
							| 58 |  | simplrr |  | 
						
							| 59 | 57 58 | eqeltrd |  | 
						
							| 60 | 59 | expr |  | 
						
							| 61 | 60 | ralrimiva |  | 
						
							| 62 |  | sseq1 |  | 
						
							| 63 | 62 | rspceaimv |  | 
						
							| 64 | 51 61 63 | syl2an2r |  | 
						
							| 65 | 64 | expr |  | 
						
							| 66 | 48 65 | impbid |  | 
						
							| 67 |  | disjsn |  | 
						
							| 68 | 67 | necon2abii |  | 
						
							| 69 | 66 68 | bitrdi |  | 
						
							| 70 | 69 | imbi2d |  | 
						
							| 71 | 70 | ralbidva |  | 
						
							| 72 | 13 71 | anbi12d |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 | 1 8 73 3 4 5 6 | eltsms |  | 
						
							| 75 |  | topontop |  | 
						
							| 76 | 10 75 | syl |  | 
						
							| 77 | 1 2 3 5 6 7 | gsumcl |  | 
						
							| 78 | 77 | snssd |  | 
						
							| 79 | 78 12 | sseqtrd |  | 
						
							| 80 |  | eqid |  | 
						
							| 81 | 80 | elcls2 |  | 
						
							| 82 | 76 79 81 | syl2anc |  | 
						
							| 83 | 72 74 82 | 3bitr4d |  | 
						
							| 84 | 83 | eqrdv |  |