Metamath Proof Explorer


Theorem unichnidl

Description: The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Assertion unichnidl R RingOps C C Idl R i C j C i j j i C Idl R

Proof

Step Hyp Ref Expression
1 dfss3 C Idl R i C i Idl R
2 eqid 1 st R = 1 st R
3 eqid ran 1 st R = ran 1 st R
4 2 3 idlss R RingOps i Idl R i ran 1 st R
5 4 ex R RingOps i Idl R i ran 1 st R
6 5 ralimdv R RingOps i C i Idl R i C i ran 1 st R
7 6 imp R RingOps i C i Idl R i C i ran 1 st R
8 1 7 sylan2b R RingOps C Idl R i C i ran 1 st R
9 unissb C ran 1 st R i C i ran 1 st R
10 8 9 sylibr R RingOps C Idl R C ran 1 st R
11 10 3ad2antr2 R RingOps C C Idl R i C j C i j j i C ran 1 st R
12 eqid GId 1 st R = GId 1 st R
13 2 12 idl0cl R RingOps i Idl R GId 1 st R i
14 13 ex R RingOps i Idl R GId 1 st R i
15 14 ralimdv R RingOps i C i Idl R i C GId 1 st R i
16 15 imp R RingOps i C i Idl R i C GId 1 st R i
17 1 16 sylan2b R RingOps C Idl R i C GId 1 st R i
18 r19.2z C i C GId 1 st R i i C GId 1 st R i
19 17 18 sylan2 C R RingOps C Idl R i C GId 1 st R i
20 19 an12s R RingOps C C Idl R i C GId 1 st R i
21 eluni2 GId 1 st R C i C GId 1 st R i
22 20 21 sylibr R RingOps C C Idl R GId 1 st R C
23 22 3adantr3 R RingOps C C Idl R i C j C i j j i GId 1 st R C
24 eluni2 x C k C x k
25 sseq1 i = k i j k j
26 sseq2 i = k j i j k
27 25 26 orbi12d i = k i j j i k j j k
28 27 ralbidv i = k j C i j j i j C k j j k
29 28 rspcv k C i C j C i j j i j C k j j k
30 29 adantr k C x k i C j C i j j i j C k j j k
31 30 ad2antlr R RingOps k C x k C Idl R i C j C i j j i j C k j j k
32 31 imp R RingOps k C x k C Idl R i C j C i j j i j C k j j k
33 eluni2 y C i C y i
34 sseq2 j = i k j k i
35 sseq1 j = i j k i k
36 34 35 orbi12d j = i k j j k k i i k
37 36 rspcv i C j C k j j k k i i k
38 37 ad2antrl R RingOps k C x k C Idl R i C y i j C k j j k k i i k
39 38 imp R RingOps k C x k C Idl R i C y i j C k j j k k i i k
40 ssel2 k i x k x i
41 40 ancoms x k k i x i
42 41 adantll k C x k k i x i
43 ssel2 C Idl R i C i Idl R
44 2 idladdcl R RingOps i Idl R x i y i x 1 st R y i
45 44 ancom2s R RingOps i Idl R y i x i x 1 st R y i
46 45 expr R RingOps i Idl R y i x i x 1 st R y i
47 46 an32s R RingOps y i i Idl R x i x 1 st R y i
48 43 47 sylan2 R RingOps y i C Idl R i C x i x 1 st R y i
49 48 an42s R RingOps C Idl R i C y i x i x 1 st R y i
50 49 anasss R RingOps C Idl R i C y i x i x 1 st R y i
51 50 imp R RingOps C Idl R i C y i x i x 1 st R y i
52 simprl C Idl R i C y i i C
53 52 ad2antlr R RingOps C Idl R i C y i x i i C
54 elunii x 1 st R y i i C x 1 st R y C
55 51 53 54 syl2anc R RingOps C Idl R i C y i x i x 1 st R y C
56 42 55 sylan2 R RingOps C Idl R i C y i k C x k k i x 1 st R y C
57 56 expr R RingOps C Idl R i C y i k C x k k i x 1 st R y C
58 57 an32s R RingOps k C x k C Idl R i C y i k i x 1 st R y C
59 58 anassrs R RingOps k C x k C Idl R i C y i k i x 1 st R y C
60 59 imp R RingOps k C x k C Idl R i C y i k i x 1 st R y C
61 ssel2 i k y i y k
62 61 ancoms y i i k y k
63 62 adantll i C y i i k y k
64 ssel2 C Idl R k C k Idl R
65 2 idladdcl R RingOps k Idl R x k y k x 1 st R y k
66 65 expr R RingOps k Idl R x k y k x 1 st R y k
67 66 an32s R RingOps x k k Idl R y k x 1 st R y k
68 64 67 sylan2 R RingOps x k C Idl R k C y k x 1 st R y k
69 68 an42s R RingOps C Idl R k C x k y k x 1 st R y k
70 69 an32s R RingOps k C x k C Idl R y k x 1 st R y k
71 70 imp R RingOps k C x k C Idl R y k x 1 st R y k
72 simprl R RingOps k C x k k C
73 72 ad2antrr R RingOps k C x k C Idl R y k k C
74 elunii x 1 st R y k k C x 1 st R y C
75 71 73 74 syl2anc R RingOps k C x k C Idl R y k x 1 st R y C
76 63 75 sylan2 R RingOps k C x k C Idl R i C y i i k x 1 st R y C
77 76 anassrs R RingOps k C x k C Idl R i C y i i k x 1 st R y C
78 60 77 jaodan R RingOps k C x k C Idl R i C y i k i i k x 1 st R y C
79 39 78 syldan R RingOps k C x k C Idl R i C y i j C k j j k x 1 st R y C
80 79 an32s R RingOps k C x k C Idl R j C k j j k i C y i x 1 st R y C
81 80 rexlimdvaa R RingOps k C x k C Idl R j C k j j k i C y i x 1 st R y C
82 33 81 syl5bi R RingOps k C x k C Idl R j C k j j k y C x 1 st R y C
83 82 ralrimiv R RingOps k C x k C Idl R j C k j j k y C x 1 st R y C
84 32 83 syldan R RingOps k C x k C Idl R i C j C i j j i y C x 1 st R y C
85 84 anasss R RingOps k C x k C Idl R i C j C i j j i y C x 1 st R y C
86 85 3adantr1 R RingOps k C x k C C Idl R i C j C i j j i y C x 1 st R y C
87 86 an32s R RingOps C C Idl R i C j C i j j i k C x k y C x 1 st R y C
88 eqid 2 nd R = 2 nd R
89 2 88 3 idllmulcl R RingOps k Idl R x k z ran 1 st R z 2 nd R x k
90 89 exp43 R RingOps k Idl R x k z ran 1 st R z 2 nd R x k
91 90 com23 R RingOps x k k Idl R z ran 1 st R z 2 nd R x k
92 91 imp41 R RingOps x k k Idl R z ran 1 st R z 2 nd R x k
93 64 92 sylanl2 R RingOps x k C Idl R k C z ran 1 st R z 2 nd R x k
94 simplrr R RingOps x k C Idl R k C z ran 1 st R k C
95 elunii z 2 nd R x k k C z 2 nd R x C
96 93 94 95 syl2anc R RingOps x k C Idl R k C z ran 1 st R z 2 nd R x C
97 2 88 3 idlrmulcl R RingOps k Idl R x k z ran 1 st R x 2 nd R z k
98 97 exp43 R RingOps k Idl R x k z ran 1 st R x 2 nd R z k
99 98 com23 R RingOps x k k Idl R z ran 1 st R x 2 nd R z k
100 99 imp41 R RingOps x k k Idl R z ran 1 st R x 2 nd R z k
101 64 100 sylanl2 R RingOps x k C Idl R k C z ran 1 st R x 2 nd R z k
102 elunii x 2 nd R z k k C x 2 nd R z C
103 101 94 102 syl2anc R RingOps x k C Idl R k C z ran 1 st R x 2 nd R z C
104 96 103 jca R RingOps x k C Idl R k C z ran 1 st R z 2 nd R x C x 2 nd R z C
105 104 ralrimiva R RingOps x k C Idl R k C z ran 1 st R z 2 nd R x C x 2 nd R z C
106 105 an42s R RingOps C Idl R k C x k z ran 1 st R z 2 nd R x C x 2 nd R z C
107 106 an32s R RingOps k C x k C Idl R z ran 1 st R z 2 nd R x C x 2 nd R z C
108 107 3ad2antr2 R RingOps k C x k C C Idl R i C j C i j j i z ran 1 st R z 2 nd R x C x 2 nd R z C
109 108 an32s R RingOps C C Idl R i C j C i j j i k C x k z ran 1 st R z 2 nd R x C x 2 nd R z C
110 87 109 jca R RingOps C C Idl R i C j C i j j i k C x k y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
111 110 rexlimdvaa R RingOps C C Idl R i C j C i j j i k C x k y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
112 24 111 syl5bi R RingOps C C Idl R i C j C i j j i x C y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
113 112 ralrimiv R RingOps C C Idl R i C j C i j j i x C y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
114 2 88 3 12 isidl R RingOps C Idl R C ran 1 st R GId 1 st R C x C y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
115 114 adantr R RingOps C C Idl R i C j C i j j i C Idl R C ran 1 st R GId 1 st R C x C y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
116 11 23 113 115 mpbir3and R RingOps C C Idl R i C j C i j j i C Idl R