Description: Choice of an upper bound for a nonempty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | upbdrech.a | |
|
upbdrech.b | |
||
upbdrech.bd | |
||
upbdrech.c | |
||
Assertion | upbdrech | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upbdrech.a | |
|
2 | upbdrech.b | |
|
3 | upbdrech.bd | |
|
4 | upbdrech.c | |
|
5 | 2 | ralrimiva | |
6 | nfra1 | |
|
7 | nfv | |
|
8 | simp3 | |
|
9 | rspa | |
|
10 | 9 | 3adant3 | |
11 | 8 10 | eqeltrd | |
12 | 11 | 3exp | |
13 | 6 7 12 | rexlimd | |
14 | 13 | abssdv | |
15 | 5 14 | syl | |
16 | eqidd | |
|
17 | 16 | rgen | |
18 | r19.2z | |
|
19 | 1 17 18 | sylancl | |
20 | nfv | |
|
21 | nfre1 | |
|
22 | 21 | nfex | |
23 | simpr | |
|
24 | elex | |
|
25 | 2 24 | syl | |
26 | isset | |
|
27 | 25 26 | sylib | |
28 | rspe | |
|
29 | 23 27 28 | syl2anc | |
30 | rexcom4 | |
|
31 | 29 30 | sylib | |
32 | 31 | 3adant3 | |
33 | 32 | 3exp | |
34 | 20 22 33 | rexlimd | |
35 | 19 34 | mpd | |
36 | abn0 | |
|
37 | 35 36 | sylibr | |
38 | vex | |
|
39 | eqeq1 | |
|
40 | 39 | rexbidv | |
41 | 38 40 | elab | |
42 | 41 | biimpi | |
43 | 42 | adantl | |
44 | nfra1 | |
|
45 | 20 44 | nfan | |
46 | 21 | nfsab | |
47 | 45 46 | nfan | |
48 | nfv | |
|
49 | simp3 | |
|
50 | simp1r | |
|
51 | simp2 | |
|
52 | rspa | |
|
53 | 50 51 52 | syl2anc | |
54 | 49 53 | eqbrtrd | |
55 | 54 | 3exp | |
56 | 55 | adantr | |
57 | 47 48 56 | rexlimd | |
58 | 43 57 | mpd | |
59 | 58 | ralrimiva | |
60 | 59 | 3adant2 | |
61 | 60 | 3exp | |
62 | 61 | reximdvai | |
63 | 3 62 | mpd | |
64 | suprcl | |
|
65 | 15 37 63 64 | syl3anc | |
66 | 4 65 | eqeltrid | |
67 | 15 | adantr | |
68 | 31 36 | sylibr | |
69 | 63 | adantr | |
70 | elabrexg | |
|
71 | 23 2 70 | syl2anc | |
72 | suprub | |
|
73 | 67 68 69 71 72 | syl31anc | |
74 | 73 4 | breqtrrdi | |
75 | 74 | ralrimiva | |
76 | 66 75 | jca | |