Metamath Proof Explorer


Theorem upbdrech

Description: Choice of an upper bound for a nonempty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses upbdrech.a φA
upbdrech.b φxAB
upbdrech.bd φyxABy
upbdrech.c C=supz|xAz=B<
Assertion upbdrech φCxABC

Proof

Step Hyp Ref Expression
1 upbdrech.a φA
2 upbdrech.b φxAB
3 upbdrech.bd φyxABy
4 upbdrech.c C=supz|xAz=B<
5 2 ralrimiva φxAB
6 nfra1 xxAB
7 nfv xz
8 simp3 xABxAz=Bz=B
9 rspa xABxAB
10 9 3adant3 xABxAz=BB
11 8 10 eqeltrd xABxAz=Bz
12 11 3exp xABxAz=Bz
13 6 7 12 rexlimd xABxAz=Bz
14 13 abssdv xABz|xAz=B
15 5 14 syl φz|xAz=B
16 eqidd xAB=B
17 16 rgen xAB=B
18 r19.2z AxAB=BxAB=B
19 1 17 18 sylancl φxAB=B
20 nfv xφ
21 nfre1 xxAz=B
22 21 nfex xzxAz=B
23 simpr φxAxA
24 elex BBV
25 2 24 syl φxABV
26 isset BVzz=B
27 25 26 sylib φxAzz=B
28 rspe xAzz=BxAzz=B
29 23 27 28 syl2anc φxAxAzz=B
30 rexcom4 xAzz=BzxAz=B
31 29 30 sylib φxAzxAz=B
32 31 3adant3 φxAB=BzxAz=B
33 32 3exp φxAB=BzxAz=B
34 20 22 33 rexlimd φxAB=BzxAz=B
35 19 34 mpd φzxAz=B
36 abn0 z|xAz=BzxAz=B
37 35 36 sylibr φz|xAz=B
38 vex wV
39 eqeq1 z=wz=Bw=B
40 39 rexbidv z=wxAz=BxAw=B
41 38 40 elab wz|xAz=BxAw=B
42 41 biimpi wz|xAz=BxAw=B
43 42 adantl φxABywz|xAz=BxAw=B
44 nfra1 xxABy
45 20 44 nfan xφxABy
46 21 nfsab xwz|xAz=B
47 45 46 nfan xφxABywz|xAz=B
48 nfv xwy
49 simp3 φxAByxAw=Bw=B
50 simp1r φxAByxAw=BxABy
51 simp2 φxAByxAw=BxA
52 rspa xAByxABy
53 50 51 52 syl2anc φxAByxAw=BBy
54 49 53 eqbrtrd φxAByxAw=Bwy
55 54 3exp φxAByxAw=Bwy
56 55 adantr φxABywz|xAz=BxAw=Bwy
57 47 48 56 rexlimd φxABywz|xAz=BxAw=Bwy
58 43 57 mpd φxABywz|xAz=Bwy
59 58 ralrimiva φxABywz|xAz=Bwy
60 59 3adant2 φyxABywz|xAz=Bwy
61 60 3exp φyxABywz|xAz=Bwy
62 61 reximdvai φyxAByywz|xAz=Bwy
63 3 62 mpd φywz|xAz=Bwy
64 suprcl z|xAz=Bz|xAz=Bywz|xAz=Bwysupz|xAz=B<
65 15 37 63 64 syl3anc φsupz|xAz=B<
66 4 65 eqeltrid φC
67 15 adantr φxAz|xAz=B
68 31 36 sylibr φxAz|xAz=B
69 63 adantr φxAywz|xAz=Bwy
70 elabrexg xABBz|xAz=B
71 23 2 70 syl2anc φxABz|xAz=B
72 suprub z|xAz=Bz|xAz=Bywz|xAz=BwyBz|xAz=BBsupz|xAz=B<
73 67 68 69 71 72 syl31anc φxABsupz|xAz=B<
74 73 4 breqtrrdi φxABC
75 74 ralrimiva φxABC
76 66 75 jca φCxABC