Metamath Proof Explorer


Theorem upgrimpths

Description: Graph isomorphisms between simple pseudographs map paths onto paths. (Contributed by AV, 31-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimpths.p φ F Paths G P
Assertion upgrimpths φ E Paths H N P

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimpths.p φ F Paths G P
8 pthistrl F Paths G P F Trails G P
9 7 8 syl φ F Trails G P
10 1 2 3 4 5 6 9 upgrimtrls φ E Trails H N P
11 1 2 3 4 5 6 7 upgrimpthslem1 φ Fun N P 1 ..^ F -1
12 pthiswlk F Paths G P F Walks G P
13 1 wlkf F Walks G P F Word dom I
14 7 12 13 3syl φ F Word dom I
15 eqid Vtx G = Vtx G
16 15 wlkp F Walks G P P : 0 F Vtx G
17 7 12 16 3syl φ P : 0 F Vtx G
18 1 2 3 4 5 6 14 17 upgrimwlklem4 φ N P : 0 E Vtx H
19 18 ffnd φ N P Fn 0 E
20 1 2 3 4 5 6 14 upgrimwlklem1 φ E = F
21 wlkcl F Walks G P F 0
22 7 12 21 3syl φ F 0
23 20 22 eqeltrd φ E 0
24 0elfz E 0 0 0 E
25 23 24 syl φ 0 0 E
26 nn0fz0 F 0 F 0 F
27 22 26 sylib φ F 0 F
28 20 oveq2d φ 0 E = 0 F
29 27 28 eleqtrrd φ F 0 E
30 fnimapr N P Fn 0 E 0 0 E F 0 E N P 0 F = N P 0 N P F
31 19 25 29 30 syl3anc φ N P 0 F = N P 0 N P F
32 31 eleq2d φ x N P 0 F x N P 0 N P F
33 vex x V
34 33 elpr x N P 0 N P F x = N P 0 x = N P F
35 32 34 bitrdi φ x N P 0 F x = N P 0 x = N P F
36 1 2 3 4 5 6 7 upgrimpthslem2 φ y 1 ..^ F ¬ N P y = N P 0 ¬ N P y = N P F
37 36 simpld φ y 1 ..^ F ¬ N P y = N P 0
38 eqeq2 x = N P 0 N P y = x N P y = N P 0
39 38 notbid x = N P 0 ¬ N P y = x ¬ N P y = N P 0
40 37 39 syl5ibrcom φ y 1 ..^ F x = N P 0 ¬ N P y = x
41 36 simprd φ y 1 ..^ F ¬ N P y = N P F
42 eqeq2 x = N P F N P y = x N P y = N P F
43 42 notbid x = N P F ¬ N P y = x ¬ N P y = N P F
44 41 43 syl5ibrcom φ y 1 ..^ F x = N P F ¬ N P y = x
45 40 44 jaod φ y 1 ..^ F x = N P 0 x = N P F ¬ N P y = x
46 45 impancom φ x = N P 0 x = N P F y 1 ..^ F ¬ N P y = x
47 46 imp φ x = N P 0 x = N P F y 1 ..^ F ¬ N P y = x
48 47 nrexdv φ x = N P 0 x = N P F ¬ y 1 ..^ F N P y = x
49 20 eqcomd φ F = E
50 49 oveq2d φ 0 F = 0 E
51 50 feq2d φ N P : 0 F Vtx H N P : 0 E Vtx H
52 18 51 mpbird φ N P : 0 F Vtx H
53 52 ffnd φ N P Fn 0 F
54 53 adantr φ x = N P 0 x = N P F N P Fn 0 F
55 fzo0ss1 1 ..^ F 0 ..^ F
56 fzossfz 0 ..^ F 0 F
57 55 56 sstri 1 ..^ F 0 F
58 57 a1i φ x = N P 0 x = N P F 1 ..^ F 0 F
59 54 58 fvelimabd φ x = N P 0 x = N P F x N P 1 ..^ F y 1 ..^ F N P y = x
60 48 59 mtbird φ x = N P 0 x = N P F ¬ x N P 1 ..^ F
61 60 ex φ x = N P 0 x = N P F ¬ x N P 1 ..^ F
62 35 61 sylbid φ x N P 0 F ¬ x N P 1 ..^ F
63 62 ralrimiv φ x N P 0 F ¬ x N P 1 ..^ F
64 disj N P 0 F N P 1 ..^ F = x N P 0 F ¬ x N P 1 ..^ F
65 63 64 sylibr φ N P 0 F N P 1 ..^ F =
66 20 oveq2d φ 1 ..^ E = 1 ..^ F
67 66 reseq2d φ N P 1 ..^ E = N P 1 ..^ F
68 67 cnveqd φ N P 1 ..^ E -1 = N P 1 ..^ F -1
69 68 funeqd φ Fun N P 1 ..^ E -1 Fun N P 1 ..^ F -1
70 preq2 E = F 0 E = 0 F
71 70 imaeq2d E = F N P 0 E = N P 0 F
72 oveq2 E = F 1 ..^ E = 1 ..^ F
73 72 imaeq2d E = F N P 1 ..^ E = N P 1 ..^ F
74 71 73 ineq12d E = F N P 0 E N P 1 ..^ E = N P 0 F N P 1 ..^ F
75 74 eqeq1d E = F N P 0 E N P 1 ..^ E = N P 0 F N P 1 ..^ F =
76 20 75 syl φ N P 0 E N P 1 ..^ E = N P 0 F N P 1 ..^ F =
77 69 76 3anbi23d φ E Trails H N P Fun N P 1 ..^ E -1 N P 0 E N P 1 ..^ E = E Trails H N P Fun N P 1 ..^ F -1 N P 0 F N P 1 ..^ F =
78 10 11 65 77 mpbir3and φ E Trails H N P Fun N P 1 ..^ E -1 N P 0 E N P 1 ..^ E =
79 ispth E Paths H N P E Trails H N P Fun N P 1 ..^ E -1 N P 0 E N P 1 ..^ E =
80 78 79 sylibr φ E Paths H N P