Step |
Hyp |
Ref |
Expression |
1 |
|
vdwlem3.v |
|
2 |
|
vdwlem3.w |
|
3 |
|
vdwlem4.r |
|
4 |
|
vdwlem4.h |
|
5 |
|
vdwlem4.f |
|
6 |
|
vdwlem7.m |
|
7 |
|
vdwlem7.g |
|
8 |
|
vdwlem7.k |
|
9 |
|
vdwlem7.a |
|
10 |
|
vdwlem7.d |
|
11 |
|
vdwlem7.s |
|
12 |
|
vdwlem6.b |
|
13 |
|
vdwlem6.e |
|
14 |
|
vdwlem6.s |
|
15 |
|
vdwlem6.j |
|
16 |
|
vdwlem6.r |
|
17 |
|
vdwlem6.t |
|
18 |
|
vdwlem6.p |
|
19 |
2
|
nnnn0d |
|
20 |
1
|
nncnd |
|
21 |
10
|
nncnd |
|
22 |
20 21
|
subcld |
|
23 |
9
|
nncnd |
|
24 |
22 23
|
npcand |
|
25 |
20 21 23
|
subsub4d |
|
26 |
21 23
|
addcomd |
|
27 |
26
|
oveq2d |
|
28 |
25 27
|
eqtrd |
|
29 |
|
cnvimass |
|
30 |
1 2 3 4 5
|
vdwlem4 |
|
31 |
29 30
|
fssdm |
|
32 |
|
ssun2 |
|
33 |
|
uz2m1nn |
|
34 |
8 33
|
syl |
|
35 |
9 10
|
nnaddcld |
|
36 |
|
vdwapid1 |
|
37 |
34 35 10 36
|
syl3anc |
|
38 |
32 37
|
sselid |
|
39 |
|
eluz2nn |
|
40 |
8 39
|
syl |
|
41 |
40
|
nncnd |
|
42 |
|
ax-1cn |
|
43 |
|
npcan |
|
44 |
41 42 43
|
sylancl |
|
45 |
44
|
fveq2d |
|
46 |
45
|
oveqd |
|
47 |
|
nnm1nn0 |
|
48 |
40 47
|
syl |
|
49 |
|
vdwapun |
|
50 |
48 9 10 49
|
syl3anc |
|
51 |
46 50
|
eqtr3d |
|
52 |
38 51
|
eleqtrrd |
|
53 |
11 52
|
sseldd |
|
54 |
31 53
|
sseldd |
|
55 |
|
elfzuz3 |
|
56 |
54 55
|
syl |
|
57 |
|
uznn0sub |
|
58 |
56 57
|
syl |
|
59 |
28 58
|
eqeltrd |
|
60 |
|
nn0nnaddcl |
|
61 |
59 9 60
|
syl2anc |
|
62 |
24 61
|
eqeltrrd |
|
63 |
9 62
|
nnaddcld |
|
64 |
|
nnm1nn0 |
|
65 |
63 64
|
syl |
|
66 |
19 65
|
nn0mulcld |
|
67 |
|
nnnn0addcl |
|
68 |
12 66 67
|
syl2anc |
|
69 |
17 68
|
eqeltrid |
|