Description: Lemma for vdwnn . (Contributed by Mario Carneiro, 13-Sep-2014) (Proof shortened by AV, 27-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vdwnn.1 | |
|
vdwnn.2 | |
||
vdwnn.3 | |
||
vdwnn.4 | |
||
Assertion | vdwnnlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdwnn.1 | |
|
2 | vdwnn.2 | |
|
3 | vdwnn.3 | |
|
4 | vdwnn.4 | |
|
5 | 3 | ssrab3 | |
6 | nnuz | |
|
7 | 5 6 | sseqtri | |
8 | 4 | r19.21bi | |
9 | infssuzcl | |
|
10 | 7 8 9 | sylancr | |
11 | 5 10 | sselid | |
12 | 11 | nnred | |
13 | 12 | ralrimiva | |
14 | fimaxre3 | |
|
15 | 1 13 14 | syl2anc | |
16 | 1nn | |
|
17 | ffvelcdm | |
|
18 | 2 16 17 | sylancl | |
19 | 18 | ne0d | |
20 | 19 | adantr | |
21 | r19.2z | |
|
22 | 21 | ex | |
23 | 20 22 | syl | |
24 | simplr | |
|
25 | fllep1 | |
|
26 | 24 25 | syl | |
27 | 12 | adantlr | |
28 | 24 | flcld | |
29 | 28 | peano2zd | |
30 | 29 | zred | |
31 | letr | |
|
32 | 27 24 30 31 | syl3anc | |
33 | 26 32 | mpan2d | |
34 | 11 | adantlr | |
35 | 34 | nnzd | |
36 | eluz | |
|
37 | 35 29 36 | syl2anc | |
38 | simpll | |
|
39 | 10 | adantlr | |
40 | 1 2 3 | vdwnnlem2 | |
41 | 40 | impancom | |
42 | 38 39 41 | syl2anc | |
43 | 37 42 | sylbird | |
44 | 33 43 | syld | |
45 | 5 | sseli | |
46 | 45 | nnnn0d | |
47 | 44 46 | syl6 | |
48 | 47 | rexlimdva | |
49 | 1 | adantr | |
50 | 2 | adantr | |
51 | simpr | |
|
52 | vdwnnlem1 | |
|
53 | 49 50 51 52 | syl3anc | |
54 | 53 | ex | |
55 | 54 | adantr | |
56 | 23 48 55 | 3syld | |
57 | oveq1 | |
|
58 | 57 | oveq2d | |
59 | 58 | raleqdv | |
60 | 59 | 2rexbidv | |
61 | 60 | notbid | |
62 | 61 3 | elrab2 | |
63 | 62 | simprbi | |
64 | 44 63 | syl6 | |
65 | 64 | ralimdva | |
66 | ralnex | |
|
67 | 65 66 | imbitrdi | |
68 | 56 67 | pm2.65d | |
69 | 68 | nrexdv | |
70 | 15 69 | pm2.65i | |