Metamath Proof Explorer


Theorem vdwnnlem3

Description: Lemma for vdwnn . (Contributed by Mario Carneiro, 13-Sep-2014) (Proof shortened by AV, 27-Sep-2020)

Ref Expression
Hypotheses vdwnn.1 φRFin
vdwnn.2 φF:R
vdwnn.3 S=k|¬adm0k1a+mdF-1c
vdwnn.4 φcRS
Assertion vdwnnlem3 ¬φ

Proof

Step Hyp Ref Expression
1 vdwnn.1 φRFin
2 vdwnn.2 φF:R
3 vdwnn.3 S=k|¬adm0k1a+mdF-1c
4 vdwnn.4 φcRS
5 3 ssrab3 S
6 nnuz =1
7 5 6 sseqtri S1
8 4 r19.21bi φcRS
9 infssuzcl S1SsupS<S
10 7 8 9 sylancr φcRsupS<S
11 5 10 sselid φcRsupS<
12 11 nnred φcRsupS<
13 12 ralrimiva φcRsupS<
14 fimaxre3 RFincRsupS<xcRsupS<x
15 1 13 14 syl2anc φxcRsupS<x
16 1nn 1
17 ffvelcdm F:R1F1R
18 2 16 17 sylancl φF1R
19 18 ne0d φR
20 19 adantr φxR
21 r19.2z RcRsupS<xcRsupS<x
22 21 ex RcRsupS<xcRsupS<x
23 20 22 syl φxcRsupS<xcRsupS<x
24 simplr φxcRx
25 fllep1 xxx+1
26 24 25 syl φxcRxx+1
27 12 adantlr φxcRsupS<
28 24 flcld φxcRx
29 28 peano2zd φxcRx+1
30 29 zred φxcRx+1
31 letr supS<xx+1supS<xxx+1supS<x+1
32 27 24 30 31 syl3anc φxcRsupS<xxx+1supS<x+1
33 26 32 mpan2d φxcRsupS<xsupS<x+1
34 11 adantlr φxcRsupS<
35 34 nnzd φxcRsupS<
36 eluz supS<x+1x+1supS<supS<x+1
37 35 29 36 syl2anc φxcRx+1supS<supS<x+1
38 simpll φxcRφ
39 10 adantlr φxcRsupS<S
40 1 2 3 vdwnnlem2 φx+1supS<supS<Sx+1S
41 40 impancom φsupS<Sx+1supS<x+1S
42 38 39 41 syl2anc φxcRx+1supS<x+1S
43 37 42 sylbird φxcRsupS<x+1x+1S
44 33 43 syld φxcRsupS<xx+1S
45 5 sseli x+1Sx+1
46 45 nnnn0d x+1Sx+10
47 44 46 syl6 φxcRsupS<xx+10
48 47 rexlimdva φxcRsupS<xx+10
49 1 adantr φx+10RFin
50 2 adantr φx+10F:R
51 simpr φx+10x+10
52 vdwnnlem1 RFinF:Rx+10cRadm0x+1-1a+mdF-1c
53 49 50 51 52 syl3anc φx+10cRadm0x+1-1a+mdF-1c
54 53 ex φx+10cRadm0x+1-1a+mdF-1c
55 54 adantr φxx+10cRadm0x+1-1a+mdF-1c
56 23 48 55 3syld φxcRsupS<xcRadm0x+1-1a+mdF-1c
57 oveq1 k=x+1k1=x+1-1
58 57 oveq2d k=x+10k1=0x+1-1
59 58 raleqdv k=x+1m0k1a+mdF-1cm0x+1-1a+mdF-1c
60 59 2rexbidv k=x+1adm0k1a+mdF-1cadm0x+1-1a+mdF-1c
61 60 notbid k=x+1¬adm0k1a+mdF-1c¬adm0x+1-1a+mdF-1c
62 61 3 elrab2 x+1Sx+1¬adm0x+1-1a+mdF-1c
63 62 simprbi x+1S¬adm0x+1-1a+mdF-1c
64 44 63 syl6 φxcRsupS<x¬adm0x+1-1a+mdF-1c
65 64 ralimdva φxcRsupS<xcR¬adm0x+1-1a+mdF-1c
66 ralnex cR¬adm0x+1-1a+mdF-1c¬cRadm0x+1-1a+mdF-1c
67 65 66 imbitrdi φxcRsupS<x¬cRadm0x+1-1a+mdF-1c
68 56 67 pm2.65d φx¬cRsupS<x
69 68 nrexdv φ¬xcRsupS<x
70 15 69 pm2.65i ¬φ