Metamath Proof Explorer


Theorem wemapsolem

Description: Lemma for wemapso . (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses wemapso.t T = x y | z A x z S y z w A w R z x w = y w
wemapsolem.1 U B A
wemapsolem.2 φ A V
wemapsolem.3 φ R Or A
wemapsolem.4 φ S Or B
wemapsolem.5 φ a U b U a b c dom a b d dom a b ¬ d R c
Assertion wemapsolem φ T Or U

Proof

Step Hyp Ref Expression
1 wemapso.t T = x y | z A x z S y z w A w R z x w = y w
2 wemapsolem.1 U B A
3 wemapsolem.2 φ A V
4 wemapsolem.3 φ R Or A
5 wemapsolem.4 φ S Or B
6 wemapsolem.5 φ a U b U a b c dom a b d dom a b ¬ d R c
7 sopo S Or B S Po B
8 5 7 syl φ S Po B
9 1 wemappo A V R Or A S Po B T Po B A
10 3 4 8 9 syl3anc φ T Po B A
11 poss U B A T Po B A T Po U
12 2 10 11 mpsyl φ T Po U
13 df-ne a b ¬ a = b
14 simprll φ a U b U a b a U
15 2 14 sseldi φ a U b U a b a B A
16 elmapi a B A a : A B
17 15 16 syl φ a U b U a b a : A B
18 17 ffnd φ a U b U a b a Fn A
19 simprlr φ a U b U a b b U
20 2 19 sseldi φ a U b U a b b B A
21 elmapi b B A b : A B
22 20 21 syl φ a U b U a b b : A B
23 22 ffnd φ a U b U a b b Fn A
24 fndmdif a Fn A b Fn A dom a b = x A | a x b x
25 18 23 24 syl2anc φ a U b U a b dom a b = x A | a x b x
26 25 eleq2d φ a U b U a b c dom a b c x A | a x b x
27 nesym a x b x ¬ b x = a x
28 fveq2 x = c b x = b c
29 fveq2 x = c a x = a c
30 28 29 eqeq12d x = c b x = a x b c = a c
31 30 notbid x = c ¬ b x = a x ¬ b c = a c
32 27 31 syl5bb x = c a x b x ¬ b c = a c
33 32 elrab c x A | a x b x c A ¬ b c = a c
34 26 33 syl6bb φ a U b U a b c dom a b c A ¬ b c = a c
35 25 eleq2d φ a U b U a b d dom a b d x A | a x b x
36 fveq2 x = d b x = b d
37 fveq2 x = d a x = a d
38 36 37 eqeq12d x = d b x = a x b d = a d
39 38 notbid x = d ¬ b x = a x ¬ b d = a d
40 27 39 syl5bb x = d a x b x ¬ b d = a d
41 40 elrab d x A | a x b x d A ¬ b d = a d
42 35 41 syl6bb φ a U b U a b d dom a b d A ¬ b d = a d
43 42 imbi1d φ a U b U a b d dom a b ¬ d R c d A ¬ b d = a d ¬ d R c
44 impexp d A ¬ b d = a d ¬ d R c d A ¬ b d = a d ¬ d R c
45 con34b d R c b d = a d ¬ b d = a d ¬ d R c
46 45 imbi2i d A d R c b d = a d d A ¬ b d = a d ¬ d R c
47 44 46 bitr4i d A ¬ b d = a d ¬ d R c d A d R c b d = a d
48 43 47 syl6bb φ a U b U a b d dom a b ¬ d R c d A d R c b d = a d
49 48 ralbidv2 φ a U b U a b d dom a b ¬ d R c d A d R c b d = a d
50 34 49 anbi12d φ a U b U a b c dom a b d dom a b ¬ d R c c A ¬ b c = a c d A d R c b d = a d
51 anass c A ¬ b c = a c d A d R c b d = a d c A ¬ b c = a c d A d R c b d = a d
52 50 51 syl6bb φ a U b U a b c dom a b d dom a b ¬ d R c c A ¬ b c = a c d A d R c b d = a d
53 52 rexbidv2 φ a U b U a b c dom a b d dom a b ¬ d R c c A ¬ b c = a c d A d R c b d = a d
54 6 53 mpbid φ a U b U a b c A ¬ b c = a c d A d R c b d = a d
55 5 ad2antrr φ a U b U a b c A S Or B
56 22 ffvelrnda φ a U b U a b c A b c B
57 17 ffvelrnda φ a U b U a b c A a c B
58 sotrieq S Or B b c B a c B b c = a c ¬ b c S a c a c S b c
59 58 con2bid S Or B b c B a c B b c S a c a c S b c ¬ b c = a c
60 59 biimprd S Or B b c B a c B ¬ b c = a c b c S a c a c S b c
61 55 56 57 60 syl12anc φ a U b U a b c A ¬ b c = a c b c S a c a c S b c
62 61 anim1d φ a U b U a b c A ¬ b c = a c d A d R c b d = a d b c S a c a c S b c d A d R c b d = a d
63 62 reximdva φ a U b U a b c A ¬ b c = a c d A d R c b d = a d c A b c S a c a c S b c d A d R c b d = a d
64 54 63 mpd φ a U b U a b c A b c S a c a c S b c d A d R c b d = a d
65 1 wemaplem1 b V a V b T a c A b c S a c d A d R c b d = a d
66 65 el2v b T a c A b c S a c d A d R c b d = a d
67 1 wemaplem1 a V b V a T b c A a c S b c d A d R c a d = b d
68 67 el2v a T b c A a c S b c d A d R c a d = b d
69 66 68 orbi12i b T a a T b c A b c S a c d A d R c b d = a d c A a c S b c d A d R c a d = b d
70 r19.43 c A b c S a c d A d R c b d = a d a c S b c d A d R c a d = b d c A b c S a c d A d R c b d = a d c A a c S b c d A d R c a d = b d
71 andir b c S a c a c S b c d A d R c b d = a d b c S a c d A d R c b d = a d a c S b c d A d R c b d = a d
72 eqcom b d = a d a d = b d
73 72 imbi2i d R c b d = a d d R c a d = b d
74 73 ralbii d A d R c b d = a d d A d R c a d = b d
75 74 anbi2i a c S b c d A d R c b d = a d a c S b c d A d R c a d = b d
76 75 orbi2i b c S a c d A d R c b d = a d a c S b c d A d R c b d = a d b c S a c d A d R c b d = a d a c S b c d A d R c a d = b d
77 71 76 bitr2i b c S a c d A d R c b d = a d a c S b c d A d R c a d = b d b c S a c a c S b c d A d R c b d = a d
78 77 rexbii c A b c S a c d A d R c b d = a d a c S b c d A d R c a d = b d c A b c S a c a c S b c d A d R c b d = a d
79 69 70 78 3bitr2i b T a a T b c A b c S a c a c S b c d A d R c b d = a d
80 64 79 sylibr φ a U b U a b b T a a T b
81 80 expr φ a U b U a b b T a a T b
82 13 81 syl5bir φ a U b U ¬ a = b b T a a T b
83 82 orrd φ a U b U a = b b T a a T b
84 3orrot a T b a = b b T a a = b b T a a T b
85 3orass a = b b T a a T b a = b b T a a T b
86 84 85 bitr2i a = b b T a a T b a T b a = b b T a
87 83 86 sylib φ a U b U a T b a = b b T a
88 12 87 issod φ T Or U