Metamath Proof Explorer


Theorem wemapsolem

Description: Lemma for wemapso . (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Mario Carneiro, 8-Feb-2015) (Revised by AV, 21-Jul-2024)

Ref Expression
Hypotheses wemapso.t T=xy|zAxzSyzwAwRzxw=yw
wemapsolem.1 UBA
wemapsolem.2 φROrA
wemapsolem.3 φSOrB
wemapsolem.4 φaUbUabcdomabddomab¬dRc
Assertion wemapsolem φTOrU

Proof

Step Hyp Ref Expression
1 wemapso.t T=xy|zAxzSyzwAwRzxw=yw
2 wemapsolem.1 UBA
3 wemapsolem.2 φROrA
4 wemapsolem.3 φSOrB
5 wemapsolem.4 φaUbUabcdomabddomab¬dRc
6 sopo SOrBSPoB
7 4 6 syl φSPoB
8 1 wemappo ROrASPoBTPoBA
9 3 7 8 syl2anc φTPoBA
10 poss UBATPoBATPoU
11 2 9 10 mpsyl φTPoU
12 df-ne ab¬a=b
13 simprll φaUbUabaU
14 2 13 sselid φaUbUabaBA
15 elmapi aBAa:AB
16 14 15 syl φaUbUaba:AB
17 16 ffnd φaUbUabaFnA
18 simprlr φaUbUabbU
19 2 18 sselid φaUbUabbBA
20 elmapi bBAb:AB
21 19 20 syl φaUbUabb:AB
22 21 ffnd φaUbUabbFnA
23 fndmdif aFnAbFnAdomab=xA|axbx
24 17 22 23 syl2anc φaUbUabdomab=xA|axbx
25 24 eleq2d φaUbUabcdomabcxA|axbx
26 nesym axbx¬bx=ax
27 fveq2 x=cbx=bc
28 fveq2 x=cax=ac
29 27 28 eqeq12d x=cbx=axbc=ac
30 29 notbid x=c¬bx=ax¬bc=ac
31 26 30 bitrid x=caxbx¬bc=ac
32 31 elrab cxA|axbxcA¬bc=ac
33 25 32 bitrdi φaUbUabcdomabcA¬bc=ac
34 24 eleq2d φaUbUabddomabdxA|axbx
35 fveq2 x=dbx=bd
36 fveq2 x=dax=ad
37 35 36 eqeq12d x=dbx=axbd=ad
38 37 notbid x=d¬bx=ax¬bd=ad
39 26 38 bitrid x=daxbx¬bd=ad
40 39 elrab dxA|axbxdA¬bd=ad
41 34 40 bitrdi φaUbUabddomabdA¬bd=ad
42 41 imbi1d φaUbUabddomab¬dRcdA¬bd=ad¬dRc
43 impexp dA¬bd=ad¬dRcdA¬bd=ad¬dRc
44 con34b dRcbd=ad¬bd=ad¬dRc
45 44 imbi2i dAdRcbd=addA¬bd=ad¬dRc
46 43 45 bitr4i dA¬bd=ad¬dRcdAdRcbd=ad
47 42 46 bitrdi φaUbUabddomab¬dRcdAdRcbd=ad
48 47 ralbidv2 φaUbUabddomab¬dRcdAdRcbd=ad
49 33 48 anbi12d φaUbUabcdomabddomab¬dRccA¬bc=acdAdRcbd=ad
50 anass cA¬bc=acdAdRcbd=adcA¬bc=acdAdRcbd=ad
51 49 50 bitrdi φaUbUabcdomabddomab¬dRccA¬bc=acdAdRcbd=ad
52 51 rexbidv2 φaUbUabcdomabddomab¬dRccA¬bc=acdAdRcbd=ad
53 5 52 mpbid φaUbUabcA¬bc=acdAdRcbd=ad
54 4 ad2antrr φaUbUabcASOrB
55 21 ffvelcdmda φaUbUabcAbcB
56 16 ffvelcdmda φaUbUabcAacB
57 sotrieq SOrBbcBacBbc=ac¬bcSacacSbc
58 57 con2bid SOrBbcBacBbcSacacSbc¬bc=ac
59 58 biimprd SOrBbcBacB¬bc=acbcSacacSbc
60 54 55 56 59 syl12anc φaUbUabcA¬bc=acbcSacacSbc
61 60 anim1d φaUbUabcA¬bc=acdAdRcbd=adbcSacacSbcdAdRcbd=ad
62 61 reximdva φaUbUabcA¬bc=acdAdRcbd=adcAbcSacacSbcdAdRcbd=ad
63 53 62 mpd φaUbUabcAbcSacacSbcdAdRcbd=ad
64 1 wemaplem1 bVaVbTacAbcSacdAdRcbd=ad
65 64 el2v bTacAbcSacdAdRcbd=ad
66 1 wemaplem1 aVbVaTbcAacSbcdAdRcad=bd
67 66 el2v aTbcAacSbcdAdRcad=bd
68 65 67 orbi12i bTaaTbcAbcSacdAdRcbd=adcAacSbcdAdRcad=bd
69 r19.43 cAbcSacdAdRcbd=adacSbcdAdRcad=bdcAbcSacdAdRcbd=adcAacSbcdAdRcad=bd
70 andir bcSacacSbcdAdRcbd=adbcSacdAdRcbd=adacSbcdAdRcbd=ad
71 eqcom bd=adad=bd
72 71 imbi2i dRcbd=addRcad=bd
73 72 ralbii dAdRcbd=addAdRcad=bd
74 73 anbi2i acSbcdAdRcbd=adacSbcdAdRcad=bd
75 74 orbi2i bcSacdAdRcbd=adacSbcdAdRcbd=adbcSacdAdRcbd=adacSbcdAdRcad=bd
76 70 75 bitr2i bcSacdAdRcbd=adacSbcdAdRcad=bdbcSacacSbcdAdRcbd=ad
77 76 rexbii cAbcSacdAdRcbd=adacSbcdAdRcad=bdcAbcSacacSbcdAdRcbd=ad
78 68 69 77 3bitr2i bTaaTbcAbcSacacSbcdAdRcbd=ad
79 63 78 sylibr φaUbUabbTaaTb
80 79 expr φaUbUabbTaaTb
81 12 80 biimtrrid φaUbU¬a=bbTaaTb
82 81 orrd φaUbUa=bbTaaTb
83 3orrot aTba=bbTaa=bbTaaTb
84 3orass a=bbTaaTba=bbTaaTb
85 83 84 bitr2i a=bbTaaTbaTba=bbTa
86 82 85 sylib φaUbUaTba=bbTa
87 11 86 issod φTOrU