Description: Lemma for well-ordered recursion. When z is R minimal, C is an acceptable function. This step is where the Axiom of Replacement becomes required. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfrlem13OLD.1 | |
|
wfrlem13OLD.2 | |
||
wfrlem13OLD.3 | |
||
wfrlem13OLD.4 | |
||
Assertion | wfrlem15OLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem13OLD.1 | |
|
2 | wfrlem13OLD.2 | |
|
3 | wfrlem13OLD.3 | |
|
4 | wfrlem13OLD.4 | |
|
5 | 1 2 3 4 | wfrlem13OLD | |
6 | 5 | adantr | |
7 | 1 3 | wfrlem10OLD | |
8 | eldifi | |
|
9 | setlikespec | |
|
10 | 8 2 9 | sylancl | |
11 | 10 | adantr | |
12 | 7 11 | eqeltrrd | |
13 | snex | |
|
14 | unexg | |
|
15 | 13 14 | mpan2 | |
16 | fnex | |
|
17 | 15 16 | sylan2 | |
18 | 6 12 17 | syl2anc | |
19 | 12 13 14 | sylancl | |
20 | 3 | wfrdmssOLD | |
21 | 8 | snssd | |
22 | unss | |
|
23 | 22 | biimpi | |
24 | 20 21 23 | sylancr | |
25 | 24 | adantr | |
26 | elun | |
|
27 | velsn | |
|
28 | 27 | orbi2i | |
29 | 26 28 | bitri | |
30 | 3 | wfrdmclOLD | |
31 | ssun3 | |
|
32 | 30 31 | syl | |
33 | 32 | a1i | |
34 | ssun1 | |
|
35 | 7 34 | eqsstrdi | |
36 | predeq3 | |
|
37 | 36 | sseq1d | |
38 | 35 37 | syl5ibrcom | |
39 | 33 38 | jaod | |
40 | 29 39 | biimtrid | |
41 | 40 | ralrimiv | |
42 | 25 41 | jca | |
43 | 1 2 3 4 | wfrlem14OLD | |
44 | 43 | ralrimiv | |
45 | 44 | adantr | |
46 | 6 42 45 | 3jca | |
47 | fneq2 | |
|
48 | sseq1 | |
|
49 | sseq2 | |
|
50 | 49 | raleqbi1dv | |
51 | 48 50 | anbi12d | |
52 | raleq | |
|
53 | 47 51 52 | 3anbi123d | |
54 | 19 46 53 | spcedv | |
55 | fneq1 | |
|
56 | fveq1 | |
|
57 | reseq1 | |
|
58 | 57 | fveq2d | |
59 | 56 58 | eqeq12d | |
60 | 59 | ralbidv | |
61 | 55 60 | 3anbi13d | |
62 | 61 | exbidv | |
63 | 18 54 62 | elabd | |