Metamath Proof Explorer


Theorem wfrlem15OLD

Description: Lemma for well-ordered recursion. When z is R minimal, C is an acceptable function. This step is where the Axiom of Replacement becomes required. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypotheses wfrlem13OLD.1 RWeA
wfrlem13OLD.2 RSeA
wfrlem13OLD.3 F=wrecsRAG
wfrlem13OLD.4 C=FzGFPredRAz
Assertion wfrlem15OLD zAdomFPredRAdomFz=Cf|xfFnxxAyxPredRAyxyxfy=GfPredRAy

Proof

Step Hyp Ref Expression
1 wfrlem13OLD.1 RWeA
2 wfrlem13OLD.2 RSeA
3 wfrlem13OLD.3 F=wrecsRAG
4 wfrlem13OLD.4 C=FzGFPredRAz
5 1 2 3 4 wfrlem13OLD zAdomFCFndomFz
6 5 adantr zAdomFPredRAdomFz=CFndomFz
7 1 3 wfrlem10OLD zAdomFPredRAdomFz=PredRAz=domF
8 eldifi zAdomFzA
9 setlikespec zARSeAPredRAzV
10 8 2 9 sylancl zAdomFPredRAzV
11 10 adantr zAdomFPredRAdomFz=PredRAzV
12 7 11 eqeltrrd zAdomFPredRAdomFz=domFV
13 snex zV
14 unexg domFVzVdomFzV
15 13 14 mpan2 domFVdomFzV
16 fnex CFndomFzdomFzVCV
17 15 16 sylan2 CFndomFzdomFVCV
18 6 12 17 syl2anc zAdomFPredRAdomFz=CV
19 12 13 14 sylancl zAdomFPredRAdomFz=domFzV
20 3 wfrdmssOLD domFA
21 8 snssd zAdomFzA
22 unss domFAzAdomFzA
23 22 biimpi domFAzAdomFzA
24 20 21 23 sylancr zAdomFdomFzA
25 24 adantr zAdomFPredRAdomFz=domFzA
26 elun ydomFzydomFyz
27 velsn yzy=z
28 27 orbi2i ydomFyzydomFy=z
29 26 28 bitri ydomFzydomFy=z
30 3 wfrdmclOLD ydomFPredRAydomF
31 ssun3 PredRAydomFPredRAydomFz
32 30 31 syl ydomFPredRAydomFz
33 32 a1i zAdomFPredRAdomFz=ydomFPredRAydomFz
34 ssun1 domFdomFz
35 7 34 eqsstrdi zAdomFPredRAdomFz=PredRAzdomFz
36 predeq3 y=zPredRAy=PredRAz
37 36 sseq1d y=zPredRAydomFzPredRAzdomFz
38 35 37 syl5ibrcom zAdomFPredRAdomFz=y=zPredRAydomFz
39 33 38 jaod zAdomFPredRAdomFz=ydomFy=zPredRAydomFz
40 29 39 biimtrid zAdomFPredRAdomFz=ydomFzPredRAydomFz
41 40 ralrimiv zAdomFPredRAdomFz=ydomFzPredRAydomFz
42 25 41 jca zAdomFPredRAdomFz=domFzAydomFzPredRAydomFz
43 1 2 3 4 wfrlem14OLD zAdomFydomFzCy=GCPredRAy
44 43 ralrimiv zAdomFydomFzCy=GCPredRAy
45 44 adantr zAdomFPredRAdomFz=ydomFzCy=GCPredRAy
46 6 42 45 3jca zAdomFPredRAdomFz=CFndomFzdomFzAydomFzPredRAydomFzydomFzCy=GCPredRAy
47 fneq2 x=domFzCFnxCFndomFz
48 sseq1 x=domFzxAdomFzA
49 sseq2 x=domFzPredRAyxPredRAydomFz
50 49 raleqbi1dv x=domFzyxPredRAyxydomFzPredRAydomFz
51 48 50 anbi12d x=domFzxAyxPredRAyxdomFzAydomFzPredRAydomFz
52 raleq x=domFzyxCy=GCPredRAyydomFzCy=GCPredRAy
53 47 51 52 3anbi123d x=domFzCFnxxAyxPredRAyxyxCy=GCPredRAyCFndomFzdomFzAydomFzPredRAydomFzydomFzCy=GCPredRAy
54 19 46 53 spcedv zAdomFPredRAdomFz=xCFnxxAyxPredRAyxyxCy=GCPredRAy
55 fneq1 f=CfFnxCFnx
56 fveq1 f=Cfy=Cy
57 reseq1 f=CfPredRAy=CPredRAy
58 57 fveq2d f=CGfPredRAy=GCPredRAy
59 56 58 eqeq12d f=Cfy=GfPredRAyCy=GCPredRAy
60 59 ralbidv f=Cyxfy=GfPredRAyyxCy=GCPredRAy
61 55 60 3anbi13d f=CfFnxxAyxPredRAyxyxfy=GfPredRAyCFnxxAyxPredRAyxyxCy=GCPredRAy
62 61 exbidv f=CxfFnxxAyxPredRAyxyxfy=GfPredRAyxCFnxxAyxPredRAyxyxCy=GCPredRAy
63 18 54 62 elabd zAdomFPredRAdomFz=Cf|xfFnxxAyxPredRAyxyxfy=GfPredRAy