Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
wwlktovfo
Next ⟩
wwlktovf1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
wwlktovfo
Description:
Lemma 3 for
wrd2f1tovbij
.
(Contributed by
Alexander van der Vekens
, 27-Jul-2018)
Ref
Expression
Hypotheses
wwlktovf1o.d
⊢
D
=
w
∈
Word
V
|
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
wwlktovf1o.r
⊢
R
=
n
∈
V
|
P
n
∈
X
wwlktovf1o.f
⊢
F
=
t
∈
D
⟼
t
1
Assertion
wwlktovfo
⊢
P
∈
V
→
F
:
D
⟶
onto
R
Proof
Step
Hyp
Ref
Expression
1
wwlktovf1o.d
⊢
D
=
w
∈
Word
V
|
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
2
wwlktovf1o.r
⊢
R
=
n
∈
V
|
P
n
∈
X
3
wwlktovf1o.f
⊢
F
=
t
∈
D
⟼
t
1
4
1
2
3
wwlktovf
⊢
F
:
D
⟶
R
5
4
a1i
⊢
P
∈
V
→
F
:
D
⟶
R
6
preq2
⊢
n
=
p
→
P
n
=
P
p
7
6
eleq1d
⊢
n
=
p
→
P
n
∈
X
↔
P
p
∈
X
8
7
2
elrab2
⊢
p
∈
R
↔
p
∈
V
∧
P
p
∈
X
9
simpl
⊢
p
∈
V
∧
P
p
∈
X
→
p
∈
V
10
9
anim2i
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
P
∈
V
∧
p
∈
V
11
eqidd
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
=
0
P
1
p
12
wrdlen2i
⊢
P
∈
V
∧
p
∈
V
→
0
P
1
p
=
0
P
1
p
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
13
10
11
12
sylc
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
14
prex
⊢
0
P
1
p
∈
V
15
14
a1i
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
∈
V
16
eleq1
⊢
0
P
1
p
=
u
→
0
P
1
p
∈
Word
V
↔
u
∈
Word
V
17
16
biimpd
⊢
0
P
1
p
=
u
→
0
P
1
p
∈
Word
V
→
u
∈
Word
V
18
17
adantr
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
∈
Word
V
→
u
∈
Word
V
19
18
com12
⊢
0
P
1
p
∈
Word
V
→
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
u
∈
Word
V
20
19
adantr
⊢
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
→
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
u
∈
Word
V
21
20
adantr
⊢
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
u
∈
Word
V
22
21
impcom
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
∧
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
∈
Word
V
23
fveqeq2
⊢
0
P
1
p
=
u
→
0
P
1
p
=
2
↔
u
=
2
24
23
biimpd
⊢
0
P
1
p
=
u
→
0
P
1
p
=
2
→
u
=
2
25
24
adantr
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
=
2
→
u
=
2
26
25
com12
⊢
0
P
1
p
=
2
→
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
u
=
2
27
26
adantl
⊢
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
→
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
u
=
2
28
27
adantr
⊢
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
u
=
2
29
28
impcom
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
∧
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
=
2
30
fveq1
⊢
0
P
1
p
=
u
→
0
P
1
p
0
=
u
0
31
30
eqeq1d
⊢
0
P
1
p
=
u
→
0
P
1
p
0
=
P
↔
u
0
=
P
32
31
biimpd
⊢
0
P
1
p
=
u
→
0
P
1
p
0
=
P
→
u
0
=
P
33
32
adantr
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
0
=
P
→
u
0
=
P
34
33
com12
⊢
0
P
1
p
0
=
P
→
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
u
0
=
P
35
34
adantr
⊢
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
u
0
=
P
36
35
adantl
⊢
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
u
0
=
P
37
36
impcom
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
∧
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
0
=
P
38
fveq1
⊢
0
P
1
p
=
u
→
0
P
1
p
1
=
u
1
39
38
eqeq1d
⊢
0
P
1
p
=
u
→
0
P
1
p
1
=
p
↔
u
1
=
p
40
31
39
anbi12d
⊢
0
P
1
p
=
u
→
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
↔
u
0
=
P
∧
u
1
=
p
41
preq12
⊢
u
0
=
P
∧
u
1
=
p
→
u
0
u
1
=
P
p
42
41
eqcomd
⊢
u
0
=
P
∧
u
1
=
p
→
P
p
=
u
0
u
1
43
42
eleq1d
⊢
u
0
=
P
∧
u
1
=
p
→
P
p
∈
X
↔
u
0
u
1
∈
X
44
43
biimpd
⊢
u
0
=
P
∧
u
1
=
p
→
P
p
∈
X
→
u
0
u
1
∈
X
45
40
44
syl6bi
⊢
0
P
1
p
=
u
→
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
P
p
∈
X
→
u
0
u
1
∈
X
46
45
com12
⊢
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
0
P
1
p
=
u
→
P
p
∈
X
→
u
0
u
1
∈
X
47
46
adantl
⊢
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
0
P
1
p
=
u
→
P
p
∈
X
→
u
0
u
1
∈
X
48
47
com13
⊢
P
p
∈
X
→
0
P
1
p
=
u
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
0
u
1
∈
X
49
48
ad2antll
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
=
u
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
0
u
1
∈
X
50
49
impcom
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
0
u
1
∈
X
51
50
imp
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
∧
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
0
u
1
∈
X
52
29
37
51
3jca
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
∧
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
53
eqcom
⊢
0
P
1
p
1
=
p
↔
p
=
0
P
1
p
1
54
38
eqeq2d
⊢
0
P
1
p
=
u
→
p
=
0
P
1
p
1
↔
p
=
u
1
55
54
biimpd
⊢
0
P
1
p
=
u
→
p
=
0
P
1
p
1
→
p
=
u
1
56
53
55
biimtrid
⊢
0
P
1
p
=
u
→
0
P
1
p
1
=
p
→
p
=
u
1
57
56
com12
⊢
0
P
1
p
1
=
p
→
0
P
1
p
=
u
→
p
=
u
1
58
57
ad2antll
⊢
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
0
P
1
p
=
u
→
p
=
u
1
59
58
com12
⊢
0
P
1
p
=
u
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
p
=
u
1
60
59
adantr
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
p
=
u
1
61
60
imp
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
∧
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
p
=
u
1
62
22
52
61
jca31
⊢
0
P
1
p
=
u
∧
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
∧
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
∈
Word
V
∧
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
∧
p
=
u
1
63
62
exp31
⊢
0
P
1
p
=
u
→
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
∈
Word
V
∧
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
∧
p
=
u
1
64
63
eqcoms
⊢
u
=
0
P
1
p
→
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
∈
Word
V
∧
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
∧
p
=
u
1
65
64
impcom
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
∧
u
=
0
P
1
p
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
u
∈
Word
V
∧
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
∧
p
=
u
1
66
15
65
spcimedv
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
0
P
1
p
∈
Word
V
∧
0
P
1
p
=
2
∧
0
P
1
p
0
=
P
∧
0
P
1
p
1
=
p
→
∃
u
u
∈
Word
V
∧
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
∧
p
=
u
1
67
13
66
mpd
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
∃
u
u
∈
Word
V
∧
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
∧
p
=
u
1
68
fveqeq2
⊢
w
=
u
→
w
=
2
↔
u
=
2
69
fveq1
⊢
w
=
u
→
w
0
=
u
0
70
69
eqeq1d
⊢
w
=
u
→
w
0
=
P
↔
u
0
=
P
71
fveq1
⊢
w
=
u
→
w
1
=
u
1
72
69
71
preq12d
⊢
w
=
u
→
w
0
w
1
=
u
0
u
1
73
72
eleq1d
⊢
w
=
u
→
w
0
w
1
∈
X
↔
u
0
u
1
∈
X
74
68
70
73
3anbi123d
⊢
w
=
u
→
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
↔
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
75
74
elrab
⊢
u
∈
w
∈
Word
V
|
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
↔
u
∈
Word
V
∧
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
76
75
anbi1i
⊢
u
∈
w
∈
Word
V
|
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
∧
p
=
u
1
↔
u
∈
Word
V
∧
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
∧
p
=
u
1
77
76
exbii
⊢
∃
u
u
∈
w
∈
Word
V
|
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
∧
p
=
u
1
↔
∃
u
u
∈
Word
V
∧
u
=
2
∧
u
0
=
P
∧
u
0
u
1
∈
X
∧
p
=
u
1
78
67
77
sylibr
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
∃
u
u
∈
w
∈
Word
V
|
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
∧
p
=
u
1
79
df-rex
⊢
∃
u
∈
w
∈
Word
V
|
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
p
=
u
1
↔
∃
u
u
∈
w
∈
Word
V
|
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
∧
p
=
u
1
80
78
79
sylibr
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
∃
u
∈
w
∈
Word
V
|
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
p
=
u
1
81
1
rexeqi
⊢
∃
u
∈
D
p
=
u
1
↔
∃
u
∈
w
∈
Word
V
|
w
=
2
∧
w
0
=
P
∧
w
0
w
1
∈
X
p
=
u
1
82
80
81
sylibr
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
∃
u
∈
D
p
=
u
1
83
fveq1
⊢
t
=
u
→
t
1
=
u
1
84
fvex
⊢
u
1
∈
V
85
83
3
84
fvmpt
⊢
u
∈
D
→
F
u
=
u
1
86
85
eqeq2d
⊢
u
∈
D
→
p
=
F
u
↔
p
=
u
1
87
86
rexbiia
⊢
∃
u
∈
D
p
=
F
u
↔
∃
u
∈
D
p
=
u
1
88
82
87
sylibr
⊢
P
∈
V
∧
p
∈
V
∧
P
p
∈
X
→
∃
u
∈
D
p
=
F
u
89
8
88
sylan2b
⊢
P
∈
V
∧
p
∈
R
→
∃
u
∈
D
p
=
F
u
90
89
ralrimiva
⊢
P
∈
V
→
∀
p
∈
R
∃
u
∈
D
p
=
F
u
91
dffo3
⊢
F
:
D
⟶
onto
R
↔
F
:
D
⟶
R
∧
∀
p
∈
R
∃
u
∈
D
p
=
F
u
92
5
90
91
sylanbrc
⊢
P
∈
V
→
F
:
D
⟶
onto
R