Metamath Proof Explorer


Theorem wwlktovfo

Description: Lemma 3 for wrd2f1tovbij . (Contributed by Alexander van der Vekens, 27-Jul-2018)

Ref Expression
Hypotheses wwlktovf1o.d D=wWordV|w=2w0=Pw0w1X
wwlktovf1o.r R=nV|PnX
wwlktovf1o.f F=tDt1
Assertion wwlktovfo PVF:DontoR

Proof

Step Hyp Ref Expression
1 wwlktovf1o.d D=wWordV|w=2w0=Pw0w1X
2 wwlktovf1o.r R=nV|PnX
3 wwlktovf1o.f F=tDt1
4 1 2 3 wwlktovf F:DR
5 4 a1i PVF:DR
6 preq2 n=pPn=Pp
7 6 eleq1d n=pPnXPpX
8 7 2 elrab2 pRpVPpX
9 simpl pVPpXpV
10 9 anim2i PVpVPpXPVpV
11 eqidd PVpVPpX0P1p=0P1p
12 wrdlen2i PVpV0P1p=0P1p0P1pWordV0P1p=20P1p0=P0P1p1=p
13 10 11 12 sylc PVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=p
14 prex 0P1pV
15 14 a1i PVpVPpX0P1pV
16 eleq1 0P1p=u0P1pWordVuWordV
17 16 biimpd 0P1p=u0P1pWordVuWordV
18 17 adantr 0P1p=uPVpVPpX0P1pWordVuWordV
19 18 com12 0P1pWordV0P1p=uPVpVPpXuWordV
20 19 adantr 0P1pWordV0P1p=20P1p=uPVpVPpXuWordV
21 20 adantr 0P1pWordV0P1p=20P1p0=P0P1p1=p0P1p=uPVpVPpXuWordV
22 21 impcom 0P1p=uPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=puWordV
23 fveqeq2 0P1p=u0P1p=2u=2
24 23 biimpd 0P1p=u0P1p=2u=2
25 24 adantr 0P1p=uPVpVPpX0P1p=2u=2
26 25 com12 0P1p=20P1p=uPVpVPpXu=2
27 26 adantl 0P1pWordV0P1p=20P1p=uPVpVPpXu=2
28 27 adantr 0P1pWordV0P1p=20P1p0=P0P1p1=p0P1p=uPVpVPpXu=2
29 28 impcom 0P1p=uPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=pu=2
30 fveq1 0P1p=u0P1p0=u0
31 30 eqeq1d 0P1p=u0P1p0=Pu0=P
32 31 biimpd 0P1p=u0P1p0=Pu0=P
33 32 adantr 0P1p=uPVpVPpX0P1p0=Pu0=P
34 33 com12 0P1p0=P0P1p=uPVpVPpXu0=P
35 34 adantr 0P1p0=P0P1p1=p0P1p=uPVpVPpXu0=P
36 35 adantl 0P1pWordV0P1p=20P1p0=P0P1p1=p0P1p=uPVpVPpXu0=P
37 36 impcom 0P1p=uPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=pu0=P
38 fveq1 0P1p=u0P1p1=u1
39 38 eqeq1d 0P1p=u0P1p1=pu1=p
40 31 39 anbi12d 0P1p=u0P1p0=P0P1p1=pu0=Pu1=p
41 preq12 u0=Pu1=pu0u1=Pp
42 41 eqcomd u0=Pu1=pPp=u0u1
43 42 eleq1d u0=Pu1=pPpXu0u1X
44 43 biimpd u0=Pu1=pPpXu0u1X
45 40 44 syl6bi 0P1p=u0P1p0=P0P1p1=pPpXu0u1X
46 45 com12 0P1p0=P0P1p1=p0P1p=uPpXu0u1X
47 46 adantl 0P1pWordV0P1p=20P1p0=P0P1p1=p0P1p=uPpXu0u1X
48 47 com13 PpX0P1p=u0P1pWordV0P1p=20P1p0=P0P1p1=pu0u1X
49 48 ad2antll PVpVPpX0P1p=u0P1pWordV0P1p=20P1p0=P0P1p1=pu0u1X
50 49 impcom 0P1p=uPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=pu0u1X
51 50 imp 0P1p=uPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=pu0u1X
52 29 37 51 3jca 0P1p=uPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=pu=2u0=Pu0u1X
53 eqcom 0P1p1=pp=0P1p1
54 38 eqeq2d 0P1p=up=0P1p1p=u1
55 54 biimpd 0P1p=up=0P1p1p=u1
56 53 55 biimtrid 0P1p=u0P1p1=pp=u1
57 56 com12 0P1p1=p0P1p=up=u1
58 57 ad2antll 0P1pWordV0P1p=20P1p0=P0P1p1=p0P1p=up=u1
59 58 com12 0P1p=u0P1pWordV0P1p=20P1p0=P0P1p1=pp=u1
60 59 adantr 0P1p=uPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=pp=u1
61 60 imp 0P1p=uPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=pp=u1
62 22 52 61 jca31 0P1p=uPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=puWordVu=2u0=Pu0u1Xp=u1
63 62 exp31 0P1p=uPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=puWordVu=2u0=Pu0u1Xp=u1
64 63 eqcoms u=0P1pPVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=puWordVu=2u0=Pu0u1Xp=u1
65 64 impcom PVpVPpXu=0P1p0P1pWordV0P1p=20P1p0=P0P1p1=puWordVu=2u0=Pu0u1Xp=u1
66 15 65 spcimedv PVpVPpX0P1pWordV0P1p=20P1p0=P0P1p1=puuWordVu=2u0=Pu0u1Xp=u1
67 13 66 mpd PVpVPpXuuWordVu=2u0=Pu0u1Xp=u1
68 fveqeq2 w=uw=2u=2
69 fveq1 w=uw0=u0
70 69 eqeq1d w=uw0=Pu0=P
71 fveq1 w=uw1=u1
72 69 71 preq12d w=uw0w1=u0u1
73 72 eleq1d w=uw0w1Xu0u1X
74 68 70 73 3anbi123d w=uw=2w0=Pw0w1Xu=2u0=Pu0u1X
75 74 elrab uwWordV|w=2w0=Pw0w1XuWordVu=2u0=Pu0u1X
76 75 anbi1i uwWordV|w=2w0=Pw0w1Xp=u1uWordVu=2u0=Pu0u1Xp=u1
77 76 exbii uuwWordV|w=2w0=Pw0w1Xp=u1uuWordVu=2u0=Pu0u1Xp=u1
78 67 77 sylibr PVpVPpXuuwWordV|w=2w0=Pw0w1Xp=u1
79 df-rex uwWordV|w=2w0=Pw0w1Xp=u1uuwWordV|w=2w0=Pw0w1Xp=u1
80 78 79 sylibr PVpVPpXuwWordV|w=2w0=Pw0w1Xp=u1
81 1 rexeqi uDp=u1uwWordV|w=2w0=Pw0w1Xp=u1
82 80 81 sylibr PVpVPpXuDp=u1
83 fveq1 t=ut1=u1
84 fvex u1V
85 83 3 84 fvmpt uDFu=u1
86 85 eqeq2d uDp=Fup=u1
87 86 rexbiia uDp=FuuDp=u1
88 82 87 sylibr PVpVPpXuDp=Fu
89 8 88 sylan2b PVpRuDp=Fu
90 89 ralrimiva PVpRuDp=Fu
91 dffo3 F:DontoRF:DRpRuDp=Fu
92 5 90 91 sylanbrc PVF:DontoR