| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xkohmeo.x |
|
| 2 |
|
xkohmeo.y |
|
| 3 |
|
xkohmeo.f |
|
| 4 |
|
xkohmeo.j |
|
| 5 |
|
xkohmeo.k |
|
| 6 |
|
xkohmeo.l |
|
| 7 |
|
simprr |
|
| 8 |
1
|
adantr |
|
| 9 |
2
|
adantr |
|
| 10 |
|
txtopon |
|
| 11 |
1 2 10
|
syl2anc |
|
| 12 |
11
|
adantr |
|
| 13 |
|
toptopon2 |
|
| 14 |
6 13
|
sylib |
|
| 15 |
14
|
adantr |
|
| 16 |
|
simpr |
|
| 17 |
|
cnf2 |
|
| 18 |
12 15 16 17
|
syl3anc |
|
| 19 |
18
|
ffnd |
|
| 20 |
|
fnov |
|
| 21 |
19 20
|
sylib |
|
| 22 |
21 16
|
eqeltrrd |
|
| 23 |
8 9 22
|
cnmpt2k |
|
| 24 |
23
|
adantrr |
|
| 25 |
7 24
|
eqeltrd |
|
| 26 |
21
|
adantrr |
|
| 27 |
|
eqid |
|
| 28 |
|
nfv |
|
| 29 |
|
nfv |
|
| 30 |
|
nfmpt1 |
|
| 31 |
30
|
nfeq2 |
|
| 32 |
29 31
|
nfan |
|
| 33 |
28 32
|
nfan |
|
| 34 |
|
nfv |
|
| 35 |
|
nfv |
|
| 36 |
|
nfcv |
|
| 37 |
|
nfmpt1 |
|
| 38 |
36 37
|
nfmpt |
|
| 39 |
38
|
nfeq2 |
|
| 40 |
35 39
|
nfan |
|
| 41 |
34 40
|
nfan |
|
| 42 |
|
nfv |
|
| 43 |
41 42
|
nfan |
|
| 44 |
|
simplrr |
|
| 45 |
44
|
fveq1d |
|
| 46 |
|
simprl |
|
| 47 |
|
toponmax |
|
| 48 |
2 47
|
syl |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
49
|
mptexd |
|
| 51 |
|
eqid |
|
| 52 |
51
|
fvmpt2 |
|
| 53 |
46 50 52
|
syl2anc |
|
| 54 |
45 53
|
eqtrd |
|
| 55 |
54
|
fveq1d |
|
| 56 |
|
simprr |
|
| 57 |
|
ovex |
|
| 58 |
|
eqid |
|
| 59 |
58
|
fvmpt2 |
|
| 60 |
56 57 59
|
sylancl |
|
| 61 |
55 60
|
eqtrd |
|
| 62 |
61
|
expr |
|
| 63 |
43 62
|
ralrimi |
|
| 64 |
|
eqid |
|
| 65 |
63 64
|
jctil |
|
| 66 |
65
|
ex |
|
| 67 |
33 66
|
ralrimi |
|
| 68 |
|
mpoeq123 |
|
| 69 |
27 67 68
|
sylancr |
|
| 70 |
26 69
|
eqtr4d |
|
| 71 |
25 70
|
jca |
|
| 72 |
|
simprr |
|
| 73 |
1
|
adantr |
|
| 74 |
2
|
adantr |
|
| 75 |
14
|
adantr |
|
| 76 |
5
|
adantr |
|
| 77 |
|
nllytop |
|
| 78 |
76 77
|
syl |
|
| 79 |
6
|
adantr |
|
| 80 |
|
eqid |
|
| 81 |
80
|
xkotopon |
|
| 82 |
78 79 81
|
syl2anc |
|
| 83 |
|
simpr |
|
| 84 |
|
cnf2 |
|
| 85 |
73 82 83 84
|
syl3anc |
|
| 86 |
85
|
feqmptd |
|
| 87 |
2
|
ad2antrr |
|
| 88 |
14
|
ad2antrr |
|
| 89 |
85
|
ffvelcdmda |
|
| 90 |
|
cnf2 |
|
| 91 |
87 88 89 90
|
syl3anc |
|
| 92 |
91
|
feqmptd |
|
| 93 |
92
|
mpteq2dva |
|
| 94 |
86 93
|
eqtrd |
|
| 95 |
94 83
|
eqeltrrd |
|
| 96 |
73 74 75 76 95
|
cnmptk2 |
|
| 97 |
96
|
adantrr |
|
| 98 |
72 97
|
eqeltrd |
|
| 99 |
94
|
adantrr |
|
| 100 |
|
nfv |
|
| 101 |
|
nfmpo1 |
|
| 102 |
101
|
nfeq2 |
|
| 103 |
100 102
|
nfan |
|
| 104 |
28 103
|
nfan |
|
| 105 |
|
nfv |
|
| 106 |
|
nfmpo2 |
|
| 107 |
106
|
nfeq2 |
|
| 108 |
105 107
|
nfan |
|
| 109 |
34 108
|
nfan |
|
| 110 |
109 42
|
nfan |
|
| 111 |
72
|
oveqd |
|
| 112 |
|
fvex |
|
| 113 |
|
eqid |
|
| 114 |
113
|
ovmpt4g |
|
| 115 |
112 114
|
mp3an3 |
|
| 116 |
111 115
|
sylan9eq |
|
| 117 |
116
|
expr |
|
| 118 |
110 117
|
ralrimi |
|
| 119 |
|
mpteq12 |
|
| 120 |
64 118 119
|
sylancr |
|
| 121 |
104 120
|
mpteq2da |
|
| 122 |
99 121
|
eqtr4d |
|
| 123 |
98 122
|
jca |
|
| 124 |
71 123
|
impbida |
|
| 125 |
124
|
opabbidv |
|
| 126 |
|
df-mpt |
|
| 127 |
3 126
|
eqtri |
|
| 128 |
127
|
cnveqi |
|
| 129 |
|
cnvopab |
|
| 130 |
128 129
|
eqtri |
|
| 131 |
|
df-mpt |
|
| 132 |
125 130 131
|
3eqtr4g |
|