Metamath Proof Explorer


Theorem xkocnv

Description: The inverse of the "currying" function F is the uncurrying function. (Contributed by Mario Carneiro, 13-Apr-2015)

Ref Expression
Hypotheses xkohmeo.x φJTopOnX
xkohmeo.y φKTopOnY
xkohmeo.f F=fJ×tKCnLxXyYxfy
xkohmeo.j φJN-Locally Comp
xkohmeo.k φKN-Locally Comp
xkohmeo.l φLTop
Assertion xkocnv φF-1=gJCnL^koKxX,yYgxy

Proof

Step Hyp Ref Expression
1 xkohmeo.x φJTopOnX
2 xkohmeo.y φKTopOnY
3 xkohmeo.f F=fJ×tKCnLxXyYxfy
4 xkohmeo.j φJN-Locally Comp
5 xkohmeo.k φKN-Locally Comp
6 xkohmeo.l φLTop
7 simprr φfJ×tKCnLg=xXyYxfyg=xXyYxfy
8 1 adantr φfJ×tKCnLJTopOnX
9 2 adantr φfJ×tKCnLKTopOnY
10 txtopon JTopOnXKTopOnYJ×tKTopOnX×Y
11 1 2 10 syl2anc φJ×tKTopOnX×Y
12 11 adantr φfJ×tKCnLJ×tKTopOnX×Y
13 toptopon2 LTopLTopOnL
14 6 13 sylib φLTopOnL
15 14 adantr φfJ×tKCnLLTopOnL
16 simpr φfJ×tKCnLfJ×tKCnL
17 cnf2 J×tKTopOnX×YLTopOnLfJ×tKCnLf:X×YL
18 12 15 16 17 syl3anc φfJ×tKCnLf:X×YL
19 18 ffnd φfJ×tKCnLfFnX×Y
20 fnov fFnX×Yf=xX,yYxfy
21 19 20 sylib φfJ×tKCnLf=xX,yYxfy
22 21 16 eqeltrrd φfJ×tKCnLxX,yYxfyJ×tKCnL
23 8 9 22 cnmpt2k φfJ×tKCnLxXyYxfyJCnL^koK
24 23 adantrr φfJ×tKCnLg=xXyYxfyxXyYxfyJCnL^koK
25 7 24 eqeltrd φfJ×tKCnLg=xXyYxfygJCnL^koK
26 21 adantrr φfJ×tKCnLg=xXyYxfyf=xX,yYxfy
27 eqid X=X
28 nfv xφ
29 nfv xfJ×tKCnL
30 nfmpt1 _xxXyYxfy
31 30 nfeq2 xg=xXyYxfy
32 29 31 nfan xfJ×tKCnLg=xXyYxfy
33 28 32 nfan xφfJ×tKCnLg=xXyYxfy
34 nfv yφ
35 nfv yfJ×tKCnL
36 nfcv _yX
37 nfmpt1 _yyYxfy
38 36 37 nfmpt _yxXyYxfy
39 38 nfeq2 yg=xXyYxfy
40 35 39 nfan yfJ×tKCnLg=xXyYxfy
41 34 40 nfan yφfJ×tKCnLg=xXyYxfy
42 nfv yxX
43 41 42 nfan yφfJ×tKCnLg=xXyYxfyxX
44 simplrr φfJ×tKCnLg=xXyYxfyxXyYg=xXyYxfy
45 44 fveq1d φfJ×tKCnLg=xXyYxfyxXyYgx=xXyYxfyx
46 simprl φfJ×tKCnLg=xXyYxfyxXyYxX
47 toponmax KTopOnYYK
48 2 47 syl φYK
49 48 ad2antrr φfJ×tKCnLg=xXyYxfyxXyYYK
50 49 mptexd φfJ×tKCnLg=xXyYxfyxXyYyYxfyV
51 eqid xXyYxfy=xXyYxfy
52 51 fvmpt2 xXyYxfyVxXyYxfyx=yYxfy
53 46 50 52 syl2anc φfJ×tKCnLg=xXyYxfyxXyYxXyYxfyx=yYxfy
54 45 53 eqtrd φfJ×tKCnLg=xXyYxfyxXyYgx=yYxfy
55 54 fveq1d φfJ×tKCnLg=xXyYxfyxXyYgxy=yYxfyy
56 simprr φfJ×tKCnLg=xXyYxfyxXyYyY
57 ovex xfyV
58 eqid yYxfy=yYxfy
59 58 fvmpt2 yYxfyVyYxfyy=xfy
60 56 57 59 sylancl φfJ×tKCnLg=xXyYxfyxXyYyYxfyy=xfy
61 55 60 eqtrd φfJ×tKCnLg=xXyYxfyxXyYgxy=xfy
62 61 expr φfJ×tKCnLg=xXyYxfyxXyYgxy=xfy
63 43 62 ralrimi φfJ×tKCnLg=xXyYxfyxXyYgxy=xfy
64 eqid Y=Y
65 63 64 jctil φfJ×tKCnLg=xXyYxfyxXY=YyYgxy=xfy
66 65 ex φfJ×tKCnLg=xXyYxfyxXY=YyYgxy=xfy
67 33 66 ralrimi φfJ×tKCnLg=xXyYxfyxXY=YyYgxy=xfy
68 mpoeq123 X=XxXY=YyYgxy=xfyxX,yYgxy=xX,yYxfy
69 27 67 68 sylancr φfJ×tKCnLg=xXyYxfyxX,yYgxy=xX,yYxfy
70 26 69 eqtr4d φfJ×tKCnLg=xXyYxfyf=xX,yYgxy
71 25 70 jca φfJ×tKCnLg=xXyYxfygJCnL^koKf=xX,yYgxy
72 simprr φgJCnL^koKf=xX,yYgxyf=xX,yYgxy
73 1 adantr φgJCnL^koKJTopOnX
74 2 adantr φgJCnL^koKKTopOnY
75 14 adantr φgJCnL^koKLTopOnL
76 5 adantr φgJCnL^koKKN-Locally Comp
77 nllytop KN-Locally Comp KTop
78 76 77 syl φgJCnL^koKKTop
79 6 adantr φgJCnL^koKLTop
80 eqid L^koK=L^koK
81 80 xkotopon KTopLTopL^koKTopOnKCnL
82 78 79 81 syl2anc φgJCnL^koKL^koKTopOnKCnL
83 simpr φgJCnL^koKgJCnL^koK
84 cnf2 JTopOnXL^koKTopOnKCnLgJCnL^koKg:XKCnL
85 73 82 83 84 syl3anc φgJCnL^koKg:XKCnL
86 85 feqmptd φgJCnL^koKg=xXgx
87 2 ad2antrr φgJCnL^koKxXKTopOnY
88 14 ad2antrr φgJCnL^koKxXLTopOnL
89 85 ffvelcdmda φgJCnL^koKxXgxKCnL
90 cnf2 KTopOnYLTopOnLgxKCnLgx:YL
91 87 88 89 90 syl3anc φgJCnL^koKxXgx:YL
92 91 feqmptd φgJCnL^koKxXgx=yYgxy
93 92 mpteq2dva φgJCnL^koKxXgx=xXyYgxy
94 86 93 eqtrd φgJCnL^koKg=xXyYgxy
95 94 83 eqeltrrd φgJCnL^koKxXyYgxyJCnL^koK
96 73 74 75 76 95 cnmptk2 φgJCnL^koKxX,yYgxyJ×tKCnL
97 96 adantrr φgJCnL^koKf=xX,yYgxyxX,yYgxyJ×tKCnL
98 72 97 eqeltrd φgJCnL^koKf=xX,yYgxyfJ×tKCnL
99 94 adantrr φgJCnL^koKf=xX,yYgxyg=xXyYgxy
100 nfv xgJCnL^koK
101 nfmpo1 _xxX,yYgxy
102 101 nfeq2 xf=xX,yYgxy
103 100 102 nfan xgJCnL^koKf=xX,yYgxy
104 28 103 nfan xφgJCnL^koKf=xX,yYgxy
105 nfv ygJCnL^koK
106 nfmpo2 _yxX,yYgxy
107 106 nfeq2 yf=xX,yYgxy
108 105 107 nfan ygJCnL^koKf=xX,yYgxy
109 34 108 nfan yφgJCnL^koKf=xX,yYgxy
110 109 42 nfan yφgJCnL^koKf=xX,yYgxyxX
111 72 oveqd φgJCnL^koKf=xX,yYgxyxfy=xxX,yYgxyy
112 fvex gxyV
113 eqid xX,yYgxy=xX,yYgxy
114 113 ovmpt4g xXyYgxyVxxX,yYgxyy=gxy
115 112 114 mp3an3 xXyYxxX,yYgxyy=gxy
116 111 115 sylan9eq φgJCnL^koKf=xX,yYgxyxXyYxfy=gxy
117 116 expr φgJCnL^koKf=xX,yYgxyxXyYxfy=gxy
118 110 117 ralrimi φgJCnL^koKf=xX,yYgxyxXyYxfy=gxy
119 mpteq12 Y=YyYxfy=gxyyYxfy=yYgxy
120 64 118 119 sylancr φgJCnL^koKf=xX,yYgxyxXyYxfy=yYgxy
121 104 120 mpteq2da φgJCnL^koKf=xX,yYgxyxXyYxfy=xXyYgxy
122 99 121 eqtr4d φgJCnL^koKf=xX,yYgxyg=xXyYxfy
123 98 122 jca φgJCnL^koKf=xX,yYgxyfJ×tKCnLg=xXyYxfy
124 71 123 impbida φfJ×tKCnLg=xXyYxfygJCnL^koKf=xX,yYgxy
125 124 opabbidv φgf|fJ×tKCnLg=xXyYxfy=gf|gJCnL^koKf=xX,yYgxy
126 df-mpt fJ×tKCnLxXyYxfy=fg|fJ×tKCnLg=xXyYxfy
127 3 126 eqtri F=fg|fJ×tKCnLg=xXyYxfy
128 127 cnveqi F-1=fg|fJ×tKCnLg=xXyYxfy-1
129 cnvopab fg|fJ×tKCnLg=xXyYxfy-1=gf|fJ×tKCnLg=xXyYxfy
130 128 129 eqtri F-1=gf|fJ×tKCnLg=xXyYxfy
131 df-mpt gJCnL^koKxX,yYgxy=gf|gJCnL^koKf=xX,yYgxy
132 125 130 131 3eqtr4g φF-1=gJCnL^koKxX,yYgxy