Description: If F is a continuous function, then g |-> g o. F is a continuous function on function spaces. (The reason we prove this and xkoco2cn independently of the more general xkococn is because that requires some inconvenient extra assumptions on S .) (Contributed by Mario Carneiro, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xkoco1cn.t | |
|
xkoco1cn.f | |
||
Assertion | xkoco1cn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xkoco1cn.t | |
|
2 | xkoco1cn.f | |
|
3 | cnco | |
|
4 | 2 3 | sylan | |
5 | 4 | fmpttd | |
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 6 7 8 | xkobval | |
10 | 9 | eqabri | |
11 | 2 | ad2antrr | |
12 | 11 3 | sylan | |
13 | imaeq1 | |
|
14 | imaco | |
|
15 | 13 14 | eqtrdi | |
16 | 15 | sseq1d | |
17 | 16 | elrab3 | |
18 | 12 17 | syl | |
19 | 18 | rabbidva | |
20 | eqid | |
|
21 | cntop2 | |
|
22 | 2 21 | syl | |
23 | 22 | ad2antrr | |
24 | 1 | ad2antrr | |
25 | imassrn | |
|
26 | 6 20 | cnf | |
27 | frn | |
|
28 | 11 26 27 | 3syl | |
29 | 25 28 | sstrid | |
30 | imacmp | |
|
31 | 11 30 | sylancom | |
32 | simplrr | |
|
33 | 20 23 24 29 31 32 | xkoopn | |
34 | 19 33 | eqeltrd | |
35 | imaeq2 | |
|
36 | eqid | |
|
37 | 36 | mptpreima | |
38 | 35 37 | eqtrdi | |
39 | 38 | eleq1d | |
40 | 34 39 | syl5ibrcom | |
41 | 40 | expimpd | |
42 | 41 | rexlimdvva | |
43 | 10 42 | biimtrid | |
44 | 43 | ralrimiv | |
45 | eqid | |
|
46 | 45 | xkotopon | |
47 | 22 1 46 | syl2anc | |
48 | ovex | |
|
49 | 48 | pwex | |
50 | 6 7 8 | xkotf | |
51 | frn | |
|
52 | 50 51 | ax-mp | |
53 | 49 52 | ssexi | |
54 | 53 | a1i | |
55 | cntop1 | |
|
56 | 2 55 | syl | |
57 | 6 7 8 | xkoval | |
58 | 56 1 57 | syl2anc | |
59 | eqid | |
|
60 | 59 | xkotopon | |
61 | 56 1 60 | syl2anc | |
62 | 47 54 58 61 | subbascn | |
63 | 5 44 62 | mpbir2and | |