Metamath Proof Explorer


Theorem xkoco1cn

Description: If F is a continuous function, then g |-> g o. F is a continuous function on function spaces. (The reason we prove this and xkoco2cn independently of the more general xkococn is because that requires some inconvenient extra assumptions on S .) (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypotheses xkoco1cn.t φTTop
xkoco1cn.f φFRCnS
Assertion xkoco1cn φgSCnTgFT^koSCnT^koR

Proof

Step Hyp Ref Expression
1 xkoco1cn.t φTTop
2 xkoco1cn.f φFRCnS
3 cnco FRCnSgSCnTgFRCnT
4 2 3 sylan φgSCnTgFRCnT
5 4 fmpttd φgSCnTgF:SCnTRCnT
6 eqid R=R
7 eqid y𝒫R|R𝑡yComp=y𝒫R|R𝑡yComp
8 eqid ky𝒫R|R𝑡yComp,vThRCnT|hkv=ky𝒫R|R𝑡yComp,vThRCnT|hkv
9 6 7 8 xkobval ranky𝒫R|R𝑡yComp,vThRCnT|hkv=x|k𝒫RvTR𝑡kCompx=hRCnT|hkv
10 9 eqabri xranky𝒫R|R𝑡yComp,vThRCnT|hkvk𝒫RvTR𝑡kCompx=hRCnT|hkv
11 2 ad2antrr φk𝒫RvTR𝑡kCompFRCnS
12 11 3 sylan φk𝒫RvTR𝑡kCompgSCnTgFRCnT
13 imaeq1 h=gFhk=gFk
14 imaco gFk=gFk
15 13 14 eqtrdi h=gFhk=gFk
16 15 sseq1d h=gFhkvgFkv
17 16 elrab3 gFRCnTgFhRCnT|hkvgFkv
18 12 17 syl φk𝒫RvTR𝑡kCompgSCnTgFhRCnT|hkvgFkv
19 18 rabbidva φk𝒫RvTR𝑡kCompgSCnT|gFhRCnT|hkv=gSCnT|gFkv
20 eqid S=S
21 cntop2 FRCnSSTop
22 2 21 syl φSTop
23 22 ad2antrr φk𝒫RvTR𝑡kCompSTop
24 1 ad2antrr φk𝒫RvTR𝑡kCompTTop
25 imassrn FkranF
26 6 20 cnf FRCnSF:RS
27 frn F:RSranFS
28 11 26 27 3syl φk𝒫RvTR𝑡kCompranFS
29 25 28 sstrid φk𝒫RvTR𝑡kCompFkS
30 imacmp FRCnSR𝑡kCompS𝑡FkComp
31 11 30 sylancom φk𝒫RvTR𝑡kCompS𝑡FkComp
32 simplrr φk𝒫RvTR𝑡kCompvT
33 20 23 24 29 31 32 xkoopn φk𝒫RvTR𝑡kCompgSCnT|gFkvT^koS
34 19 33 eqeltrd φk𝒫RvTR𝑡kCompgSCnT|gFhRCnT|hkvT^koS
35 imaeq2 x=hRCnT|hkvgSCnTgF-1x=gSCnTgF-1hRCnT|hkv
36 eqid gSCnTgF=gSCnTgF
37 36 mptpreima gSCnTgF-1hRCnT|hkv=gSCnT|gFhRCnT|hkv
38 35 37 eqtrdi x=hRCnT|hkvgSCnTgF-1x=gSCnT|gFhRCnT|hkv
39 38 eleq1d x=hRCnT|hkvgSCnTgF-1xT^koSgSCnT|gFhRCnT|hkvT^koS
40 34 39 syl5ibrcom φk𝒫RvTR𝑡kCompx=hRCnT|hkvgSCnTgF-1xT^koS
41 40 expimpd φk𝒫RvTR𝑡kCompx=hRCnT|hkvgSCnTgF-1xT^koS
42 41 rexlimdvva φk𝒫RvTR𝑡kCompx=hRCnT|hkvgSCnTgF-1xT^koS
43 10 42 biimtrid φxranky𝒫R|R𝑡yComp,vThRCnT|hkvgSCnTgF-1xT^koS
44 43 ralrimiv φxranky𝒫R|R𝑡yComp,vThRCnT|hkvgSCnTgF-1xT^koS
45 eqid T^koS=T^koS
46 45 xkotopon STopTTopT^koSTopOnSCnT
47 22 1 46 syl2anc φT^koSTopOnSCnT
48 ovex RCnTV
49 48 pwex 𝒫RCnTV
50 6 7 8 xkotf ky𝒫R|R𝑡yComp,vThRCnT|hkv:y𝒫R|R𝑡yComp×T𝒫RCnT
51 frn ky𝒫R|R𝑡yComp,vThRCnT|hkv:y𝒫R|R𝑡yComp×T𝒫RCnTranky𝒫R|R𝑡yComp,vThRCnT|hkv𝒫RCnT
52 50 51 ax-mp ranky𝒫R|R𝑡yComp,vThRCnT|hkv𝒫RCnT
53 49 52 ssexi ranky𝒫R|R𝑡yComp,vThRCnT|hkvV
54 53 a1i φranky𝒫R|R𝑡yComp,vThRCnT|hkvV
55 cntop1 FRCnSRTop
56 2 55 syl φRTop
57 6 7 8 xkoval RTopTTopT^koR=topGenfiranky𝒫R|R𝑡yComp,vThRCnT|hkv
58 56 1 57 syl2anc φT^koR=topGenfiranky𝒫R|R𝑡yComp,vThRCnT|hkv
59 eqid T^koR=T^koR
60 59 xkotopon RTopTTopT^koRTopOnRCnT
61 56 1 60 syl2anc φT^koRTopOnRCnT
62 47 54 58 61 subbascn φgSCnTgFT^koSCnT^koRgSCnTgF:SCnTRCnTxranky𝒫R|R𝑡yComp,vThRCnT|hkvgSCnTgF-1xT^koS
63 5 44 62 mpbir2and φgSCnTgFT^koSCnT^koR