Description: Under certain conditions, the conclusion of lesubadd is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xlesubadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 | |
|
2 | simpl2 | |
|
3 | xnegcl | |
|
4 | 2 3 | syl | |
5 | xaddcl | |
|
6 | 1 4 5 | syl2anc | |
7 | 6 | adantr | |
8 | simpll3 | |
|
9 | simpr | |
|
10 | xleadd1 | |
|
11 | 7 8 9 10 | syl3anc | |
12 | xnpcan | |
|
13 | 1 12 | sylan | |
14 | 13 | breq1d | |
15 | 11 14 | bitrd | |
16 | simpr3 | |
|
17 | oveq1 | |
|
18 | pnfaddmnf | |
|
19 | 17 18 | eqtrdi | |
20 | 19 | breq1d | |
21 | 16 20 | syl5ibrcom | |
22 | xaddmnf1 | |
|
23 | 22 | ex | |
24 | 1 23 | syl | |
25 | simpl3 | |
|
26 | mnfle | |
|
27 | 25 26 | syl | |
28 | breq1 | |
|
29 | 27 28 | syl5ibrcom | |
30 | 24 29 | syld | |
31 | 21 30 | pm2.61dne | |
32 | pnfge | |
|
33 | 1 32 | syl | |
34 | ge0nemnf | |
|
35 | 25 16 34 | syl2anc | |
36 | xaddpnf1 | |
|
37 | 25 35 36 | syl2anc | |
38 | 33 37 | breqtrrd | |
39 | 31 38 | 2thd | |
40 | xnegeq | |
|
41 | xnegpnf | |
|
42 | 40 41 | eqtrdi | |
43 | 42 | oveq2d | |
44 | 43 | breq1d | |
45 | oveq2 | |
|
46 | 45 | breq2d | |
47 | 44 46 | bibi12d | |
48 | 39 47 | syl5ibrcom | |
49 | 48 | imp | |
50 | simpr2 | |
|
51 | 2 50 | jca | |
52 | xrnemnf | |
|
53 | 51 52 | sylib | |
54 | 15 49 53 | mpjaodan | |