Metamath Proof Explorer


Theorem xppreima

Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 6-Jun-2017)

Ref Expression
Assertion xppreima FunFranFV×VF-1Y×Z=1stF-1Y2ndF-1Z

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 fncnvima2 FFndomFF-1Y×Z=xdomF|FxY×Z
3 1 2 sylbi FunFF-1Y×Z=xdomF|FxY×Z
4 3 adantr FunFranFV×VF-1Y×Z=xdomF|FxY×Z
5 elxp6 FxY×ZFx=1stFx2ndFx1stFxY2ndFxZ
6 fvco FunFxdomF1stFx=1stFx
7 fvco FunFxdomF2ndFx=2ndFx
8 6 7 opeq12d FunFxdomF1stFx2ndFx=1stFx2ndFx
9 8 eqeq2d FunFxdomFFx=1stFx2ndFxFx=1stFx2ndFx
10 6 eleq1d FunFxdomF1stFxY1stFxY
11 7 eleq1d FunFxdomF2ndFxZ2ndFxZ
12 10 11 anbi12d FunFxdomF1stFxY2ndFxZ1stFxY2ndFxZ
13 9 12 anbi12d FunFxdomFFx=1stFx2ndFx1stFxY2ndFxZFx=1stFx2ndFx1stFxY2ndFxZ
14 5 13 bitr4id FunFxdomFFxY×ZFx=1stFx2ndFx1stFxY2ndFxZ
15 14 adantlr FunFranFV×VxdomFFxY×ZFx=1stFx2ndFx1stFxY2ndFxZ
16 opfv FunFranFV×VxdomFFx=1stFx2ndFx
17 16 biantrurd FunFranFV×VxdomF1stFxY2ndFxZFx=1stFx2ndFx1stFxY2ndFxZ
18 fo1st 1st:VontoV
19 fofun 1st:VontoVFun1st
20 18 19 ax-mp Fun1st
21 funco Fun1stFunFFun1stF
22 20 21 mpan FunFFun1stF
23 22 adantr FunFxdomFFun1stF
24 ssv FdomFV
25 fof 1st:VontoV1st:VV
26 fdm 1st:VVdom1st=V
27 18 25 26 mp2b dom1st=V
28 24 27 sseqtrri FdomFdom1st
29 ssid domFdomF
30 funimass3 FunFdomFdomFFdomFdom1stdomFF-1dom1st
31 29 30 mpan2 FunFFdomFdom1stdomFF-1dom1st
32 28 31 mpbii FunFdomFF-1dom1st
33 32 sselda FunFxdomFxF-1dom1st
34 dmco dom1stF=F-1dom1st
35 33 34 eleqtrrdi FunFxdomFxdom1stF
36 fvimacnv Fun1stFxdom1stF1stFxYx1stF-1Y
37 23 35 36 syl2anc FunFxdomF1stFxYx1stF-1Y
38 fo2nd 2nd:VontoV
39 fofun 2nd:VontoVFun2nd
40 38 39 ax-mp Fun2nd
41 funco Fun2ndFunFFun2ndF
42 40 41 mpan FunFFun2ndF
43 42 adantr FunFxdomFFun2ndF
44 fof 2nd:VontoV2nd:VV
45 fdm 2nd:VVdom2nd=V
46 38 44 45 mp2b dom2nd=V
47 24 46 sseqtrri FdomFdom2nd
48 funimass3 FunFdomFdomFFdomFdom2nddomFF-1dom2nd
49 29 48 mpan2 FunFFdomFdom2nddomFF-1dom2nd
50 47 49 mpbii FunFdomFF-1dom2nd
51 50 sselda FunFxdomFxF-1dom2nd
52 dmco dom2ndF=F-1dom2nd
53 51 52 eleqtrrdi FunFxdomFxdom2ndF
54 fvimacnv Fun2ndFxdom2ndF2ndFxZx2ndF-1Z
55 43 53 54 syl2anc FunFxdomF2ndFxZx2ndF-1Z
56 37 55 anbi12d FunFxdomF1stFxY2ndFxZx1stF-1Yx2ndF-1Z
57 56 adantlr FunFranFV×VxdomF1stFxY2ndFxZx1stF-1Yx2ndF-1Z
58 15 17 57 3bitr2d FunFranFV×VxdomFFxY×Zx1stF-1Yx2ndF-1Z
59 58 rabbidva FunFranFV×VxdomF|FxY×Z=xdomF|x1stF-1Yx2ndF-1Z
60 4 59 eqtrd FunFranFV×VF-1Y×Z=xdomF|x1stF-1Yx2ndF-1Z
61 dfin5 domF1stF-1Y=xdomF|x1stF-1Y
62 dfin5 domF2ndF-1Z=xdomF|x2ndF-1Z
63 61 62 ineq12i domF1stF-1YdomF2ndF-1Z=xdomF|x1stF-1YxdomF|x2ndF-1Z
64 cnvimass 1stF-1Ydom1stF
65 dmcoss dom1stFdomF
66 64 65 sstri 1stF-1YdomF
67 sseqin2 1stF-1YdomFdomF1stF-1Y=1stF-1Y
68 66 67 mpbi domF1stF-1Y=1stF-1Y
69 cnvimass 2ndF-1Zdom2ndF
70 dmcoss dom2ndFdomF
71 69 70 sstri 2ndF-1ZdomF
72 sseqin2 2ndF-1ZdomFdomF2ndF-1Z=2ndF-1Z
73 71 72 mpbi domF2ndF-1Z=2ndF-1Z
74 68 73 ineq12i domF1stF-1YdomF2ndF-1Z=1stF-1Y2ndF-1Z
75 inrab xdomF|x1stF-1YxdomF|x2ndF-1Z=xdomF|x1stF-1Yx2ndF-1Z
76 63 74 75 3eqtr3ri xdomF|x1stF-1Yx2ndF-1Z=1stF-1Y2ndF-1Z
77 60 76 eqtrdi FunFranFV×VF-1Y×Z=1stF-1Y2ndF-1Z