Metamath Proof Explorer


Theorem xpsvsca

Description: Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses xpssca.t T=R×𝑠S
xpssca.g G=ScalarR
xpssca.1 φRV
xpssca.2 φSW
xpsvsca.x X=BaseR
xpsvsca.y Y=BaseS
xpsvsca.k K=BaseG
xpsvsca.m ·˙=R
xpsvsca.n ×˙=S
xpsvsca.p ˙=T
xpsvsca.3 φAK
xpsvsca.4 φBX
xpsvsca.5 φCY
xpsvsca.6 φA·˙BX
xpsvsca.7 φA×˙CY
Assertion xpsvsca φA˙BC=A·˙BA×˙C

Proof

Step Hyp Ref Expression
1 xpssca.t T=R×𝑠S
2 xpssca.g G=ScalarR
3 xpssca.1 φRV
4 xpssca.2 φSW
5 xpsvsca.x X=BaseR
6 xpsvsca.y Y=BaseS
7 xpsvsca.k K=BaseG
8 xpsvsca.m ·˙=R
9 xpsvsca.n ×˙=S
10 xpsvsca.p ˙=T
11 xpsvsca.3 φAK
12 xpsvsca.4 φBX
13 xpsvsca.5 φCY
14 xpsvsca.6 φA·˙BX
15 xpsvsca.7 φA×˙CY
16 df-ov BxX,yYx1𝑜yC=xX,yYx1𝑜yBC
17 eqid xX,yYx1𝑜y=xX,yYx1𝑜y
18 17 xpsfval BXCYBxX,yYx1𝑜yC=B1𝑜C
19 12 13 18 syl2anc φBxX,yYx1𝑜yC=B1𝑜C
20 16 19 eqtr3id φxX,yYx1𝑜yBC=B1𝑜C
21 12 13 opelxpd φBCX×Y
22 17 xpsff1o2 xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜y
23 f1of xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yxX,yYx1𝑜y:X×YranxX,yYx1𝑜y
24 22 23 ax-mp xX,yYx1𝑜y:X×YranxX,yYx1𝑜y
25 24 ffvelcdmi BCX×YxX,yYx1𝑜yBCranxX,yYx1𝑜y
26 21 25 syl φxX,yYx1𝑜yBCranxX,yYx1𝑜y
27 20 26 eqeltrrd φB1𝑜CranxX,yYx1𝑜y
28 eqid G𝑠R1𝑜S=G𝑠R1𝑜S
29 1 5 6 3 4 17 2 28 xpsval φT=xX,yYx1𝑜y-1𝑠G𝑠R1𝑜S
30 1 5 6 3 4 17 2 28 xpsrnbas φranxX,yYx1𝑜y=BaseG𝑠R1𝑜S
31 f1ocnv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
32 22 31 mp1i φxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
33 f1ofo xX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×YxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
34 32 33 syl φxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
35 ovexd φG𝑠R1𝑜SV
36 2 fvexi GV
37 36 a1i GV
38 prex R1𝑜SV
39 38 a1i R1𝑜SV
40 28 37 39 prdssca G=ScalarG𝑠R1𝑜S
41 40 mptru G=ScalarG𝑠R1𝑜S
42 eqid G𝑠R1𝑜S=G𝑠R1𝑜S
43 32 f1ovscpbl φaKbranxX,yYx1𝑜ycranxX,yYx1𝑜yxX,yYx1𝑜y-1b=xX,yYx1𝑜y-1cxX,yYx1𝑜y-1aG𝑠R1𝑜Sb=xX,yYx1𝑜y-1aG𝑠R1𝑜Sc
44 29 30 34 35 41 7 42 10 43 imasvscaval φAKB1𝑜CranxX,yYx1𝑜yA˙xX,yYx1𝑜y-1B1𝑜C=xX,yYx1𝑜y-1AG𝑠R1𝑜SB1𝑜C
45 11 27 44 mpd3an23 φA˙xX,yYx1𝑜y-1B1𝑜C=xX,yYx1𝑜y-1AG𝑠R1𝑜SB1𝑜C
46 f1ocnvfv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yBCX×YxX,yYx1𝑜yBC=B1𝑜CxX,yYx1𝑜y-1B1𝑜C=BC
47 22 21 46 sylancr φxX,yYx1𝑜yBC=B1𝑜CxX,yYx1𝑜y-1B1𝑜C=BC
48 20 47 mpd φxX,yYx1𝑜y-1B1𝑜C=BC
49 48 oveq2d φA˙xX,yYx1𝑜y-1B1𝑜C=A˙BC
50 iftrue k=ifk=RS=R
51 50 fveq2d k=ifk=RS=R
52 51 8 eqtr4di k=ifk=RS=·˙
53 eqidd k=A=A
54 iftrue k=ifk=BC=B
55 52 53 54 oveq123d k=Aifk=RSifk=BC=A·˙B
56 iftrue k=ifk=A·˙BA×˙C=A·˙B
57 55 56 eqtr4d k=Aifk=RSifk=BC=ifk=A·˙BA×˙C
58 iffalse ¬k=ifk=RS=S
59 58 fveq2d ¬k=ifk=RS=S
60 59 9 eqtr4di ¬k=ifk=RS=×˙
61 eqidd ¬k=A=A
62 iffalse ¬k=ifk=BC=C
63 60 61 62 oveq123d ¬k=Aifk=RSifk=BC=A×˙C
64 iffalse ¬k=ifk=A·˙BA×˙C=A×˙C
65 63 64 eqtr4d ¬k=Aifk=RSifk=BC=ifk=A·˙BA×˙C
66 57 65 pm2.61i Aifk=RSifk=BC=ifk=A·˙BA×˙C
67 3 adantr φk2𝑜RV
68 4 adantr φk2𝑜SW
69 simpr φk2𝑜k2𝑜
70 fvprif RVSWk2𝑜R1𝑜Sk=ifk=RS
71 67 68 69 70 syl3anc φk2𝑜R1𝑜Sk=ifk=RS
72 71 fveq2d φk2𝑜R1𝑜Sk=ifk=RS
73 eqidd φk2𝑜A=A
74 12 adantr φk2𝑜BX
75 13 adantr φk2𝑜CY
76 fvprif BXCYk2𝑜B1𝑜Ck=ifk=BC
77 74 75 69 76 syl3anc φk2𝑜B1𝑜Ck=ifk=BC
78 72 73 77 oveq123d φk2𝑜AR1𝑜SkB1𝑜Ck=Aifk=RSifk=BC
79 14 adantr φk2𝑜A·˙BX
80 15 adantr φk2𝑜A×˙CY
81 fvprif A·˙BXA×˙CYk2𝑜A·˙B1𝑜A×˙Ck=ifk=A·˙BA×˙C
82 79 80 69 81 syl3anc φk2𝑜A·˙B1𝑜A×˙Ck=ifk=A·˙BA×˙C
83 66 78 82 3eqtr4a φk2𝑜AR1𝑜SkB1𝑜Ck=A·˙B1𝑜A×˙Ck
84 83 mpteq2dva φk2𝑜AR1𝑜SkB1𝑜Ck=k2𝑜A·˙B1𝑜A×˙Ck
85 eqid BaseG𝑠R1𝑜S=BaseG𝑠R1𝑜S
86 36 a1i φGV
87 2on 2𝑜On
88 87 a1i φ2𝑜On
89 fnpr2o RVSWR1𝑜SFn2𝑜
90 3 4 89 syl2anc φR1𝑜SFn2𝑜
91 27 30 eleqtrd φB1𝑜CBaseG𝑠R1𝑜S
92 28 85 42 7 86 88 90 11 91 prdsvscaval φAG𝑠R1𝑜SB1𝑜C=k2𝑜AR1𝑜SkB1𝑜Ck
93 fnpr2o A·˙BXA×˙CYA·˙B1𝑜A×˙CFn2𝑜
94 14 15 93 syl2anc φA·˙B1𝑜A×˙CFn2𝑜
95 dffn5 A·˙B1𝑜A×˙CFn2𝑜A·˙B1𝑜A×˙C=k2𝑜A·˙B1𝑜A×˙Ck
96 94 95 sylib φA·˙B1𝑜A×˙C=k2𝑜A·˙B1𝑜A×˙Ck
97 84 92 96 3eqtr4d φAG𝑠R1𝑜SB1𝑜C=A·˙B1𝑜A×˙C
98 97 fveq2d φxX,yYx1𝑜y-1AG𝑠R1𝑜SB1𝑜C=xX,yYx1𝑜y-1A·˙B1𝑜A×˙C
99 df-ov A·˙BxX,yYx1𝑜yA×˙C=xX,yYx1𝑜yA·˙BA×˙C
100 17 xpsfval A·˙BXA×˙CYA·˙BxX,yYx1𝑜yA×˙C=A·˙B1𝑜A×˙C
101 14 15 100 syl2anc φA·˙BxX,yYx1𝑜yA×˙C=A·˙B1𝑜A×˙C
102 99 101 eqtr3id φxX,yYx1𝑜yA·˙BA×˙C=A·˙B1𝑜A×˙C
103 14 15 opelxpd φA·˙BA×˙CX×Y
104 f1ocnvfv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yA·˙BA×˙CX×YxX,yYx1𝑜yA·˙BA×˙C=A·˙B1𝑜A×˙CxX,yYx1𝑜y-1A·˙B1𝑜A×˙C=A·˙BA×˙C
105 22 103 104 sylancr φxX,yYx1𝑜yA·˙BA×˙C=A·˙B1𝑜A×˙CxX,yYx1𝑜y-1A·˙B1𝑜A×˙C=A·˙BA×˙C
106 102 105 mpd φxX,yYx1𝑜y-1A·˙B1𝑜A×˙C=A·˙BA×˙C
107 98 106 eqtrd φxX,yYx1𝑜y-1AG𝑠R1𝑜SB1𝑜C=A·˙BA×˙C
108 45 49 107 3eqtr3d φA˙BC=A·˙BA×˙C