| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zartop.1 |
|
| 2 |
|
zartop.2 |
|
| 3 |
|
zarmxt1.1 |
|
| 4 |
|
zarmxt1.2 |
|
| 5 |
1 2
|
zartop |
|
| 6 |
3
|
fvexi |
|
| 7 |
|
resttop |
|
| 8 |
4 7
|
eqeltrid |
|
| 9 |
5 6 8
|
sylancl |
|
| 10 |
|
eqid |
|
| 11 |
10
|
mxidlprm |
|
| 12 |
11
|
ex |
|
| 13 |
12
|
ssrdv |
|
| 14 |
13
|
adantr |
|
| 15 |
|
eqid |
|
| 16 |
14 3 15
|
3sstr4g |
|
| 17 |
|
sseq2 |
|
| 18 |
17
|
cbvrabv |
|
| 19 |
|
sseq1 |
|
| 20 |
19
|
rabbidv |
|
| 21 |
18 20
|
eqtrid |
|
| 22 |
21
|
cbvmptv |
|
| 23 |
1 2 15 22
|
zartopn |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
simpld |
|
| 26 |
|
toponuni |
|
| 27 |
25 26
|
syl |
|
| 28 |
16 27
|
sseqtrd |
|
| 29 |
|
simpl |
|
| 30 |
29
|
crngringd |
|
| 31 |
|
simpr |
|
| 32 |
4
|
unieqi |
|
| 33 |
31 32
|
eleqtrdi |
|
| 34 |
5
|
adantr |
|
| 35 |
|
eqid |
|
| 36 |
35
|
restuni |
|
| 37 |
34 28 36
|
syl2anc |
|
| 38 |
33 37
|
eleqtrrd |
|
| 39 |
38 3
|
eleqtrdi |
|
| 40 |
|
eqid |
|
| 41 |
40
|
mxidlidl |
|
| 42 |
30 39 41
|
syl2anc |
|
| 43 |
|
eqid |
|
| 44 |
22 43
|
zarclssn |
|
| 45 |
44
|
biimpar |
|
| 46 |
29 42 39 45
|
syl21anc |
|
| 47 |
22
|
funmpt2 |
|
| 48 |
|
fvex |
|
| 49 |
48
|
rabex |
|
| 50 |
49 22
|
dmmpti |
|
| 51 |
42 50
|
eleqtrrdi |
|
| 52 |
|
fvelrn |
|
| 53 |
47 51 52
|
sylancr |
|
| 54 |
46 53
|
eqeltrd |
|
| 55 |
24
|
simprd |
|
| 56 |
54 55
|
eleqtrd |
|
| 57 |
38
|
snssd |
|
| 58 |
35
|
restcldi |
|
| 59 |
28 56 57 58
|
syl3anc |
|
| 60 |
4
|
fveq2i |
|
| 61 |
59 60
|
eleqtrrdi |
|
| 62 |
61
|
ralrimiva |
|
| 63 |
|
eqid |
|
| 64 |
63
|
ist1 |
|
| 65 |
9 62 64
|
sylanbrc |
|