Metamath Proof Explorer


Theorem zdis

Description: The integers are a discrete set in the topology on CC . (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypothesis recld2.1 J=TopOpenfld
Assertion zdis J𝑡=𝒫

Proof

Step Hyp Ref Expression
1 recld2.1 J=TopOpenfld
2 restsspw J𝑡𝒫
3 elpwi x𝒫x
4 3 sselda x𝒫yxy
5 4 zcnd x𝒫yxy
6 cnxmet abs∞Met
7 1xr 1*
8 1 cnfldtopn J=MetOpenabs
9 8 blopn abs∞Mety1*yballabs1J
10 6 7 9 mp3an13 yyballabs1J
11 1 cnfldtop JTop
12 zex V
13 elrestr JTopVyballabs1Jyballabs1J𝑡
14 11 12 13 mp3an12 yballabs1Jyballabs1J𝑡
15 5 10 14 3syl x𝒫yxyballabs1J𝑡
16 1rp 1+
17 blcntr abs∞Mety1+yyballabs1
18 6 16 17 mp3an13 yyyballabs1
19 5 18 syl x𝒫yxyyballabs1
20 19 4 elind x𝒫yxyyballabs1
21 5 adantr x𝒫yxzyballabs1y
22 simpr x𝒫yxzyballabs1zyballabs1
23 22 elin2d x𝒫yxzyballabs1z
24 23 zcnd x𝒫yxzyballabs1z
25 4 adantr x𝒫yxzyballabs1y
26 25 23 zsubcld x𝒫yxzyballabs1yz
27 26 zcnd x𝒫yxzyballabs1yz
28 eqid abs=abs
29 28 cnmetdval yzyabsz=yz
30 21 24 29 syl2anc x𝒫yxzyballabs1yabsz=yz
31 22 elin1d x𝒫yxzyballabs1zyballabs1
32 elbl2 abs∞Met1*yzzyballabs1yabsz<1
33 6 7 32 mpanl12 yzzyballabs1yabsz<1
34 21 24 33 syl2anc x𝒫yxzyballabs1zyballabs1yabsz<1
35 31 34 mpbid x𝒫yxzyballabs1yabsz<1
36 30 35 eqbrtrrd x𝒫yxzyballabs1yz<1
37 nn0abscl yzyz0
38 nn0lt10b yz0yz<1yz=0
39 26 37 38 3syl x𝒫yxzyballabs1yz<1yz=0
40 36 39 mpbid x𝒫yxzyballabs1yz=0
41 27 40 abs00d x𝒫yxzyballabs1yz=0
42 21 24 41 subeq0d x𝒫yxzyballabs1y=z
43 simplr x𝒫yxzyballabs1yx
44 42 43 eqeltrrd x𝒫yxzyballabs1zx
45 44 ex x𝒫yxzyballabs1zx
46 45 ssrdv x𝒫yxyballabs1x
47 eleq2 z=yballabs1yzyyballabs1
48 sseq1 z=yballabs1zxyballabs1x
49 47 48 anbi12d z=yballabs1yzzxyyballabs1yballabs1x
50 49 rspcev yballabs1J𝑡yyballabs1yballabs1xzJ𝑡yzzx
51 15 20 46 50 syl12anc x𝒫yxzJ𝑡yzzx
52 51 ralrimiva x𝒫yxzJ𝑡yzzx
53 resttop JTopVJ𝑡Top
54 11 12 53 mp2an J𝑡Top
55 eltop2 J𝑡TopxJ𝑡yxzJ𝑡yzzx
56 54 55 ax-mp xJ𝑡yxzJ𝑡yzzx
57 52 56 sylibr x𝒫xJ𝑡
58 57 ssriv 𝒫J𝑡
59 2 58 eqssi J𝑡=𝒫