Step |
Hyp |
Ref |
Expression |
1 |
|
zmulscld.1 |
|
2 |
|
zmulscld.2 |
|
3 |
|
elzs |
|
4 |
1 3
|
sylib |
|
5 |
|
elzs |
|
6 |
2 5
|
sylib |
|
7 |
|
reeanv |
|
8 |
7
|
2rexbii |
|
9 |
|
reeanv |
|
10 |
8 9
|
bitri |
|
11 |
|
nnsno |
|
12 |
11
|
ad2antrr |
|
13 |
|
nnsno |
|
14 |
13
|
ad2antrl |
|
15 |
12 14
|
subscld |
|
16 |
|
nnsno |
|
17 |
16
|
ad2antlr |
|
18 |
|
nnsno |
|
19 |
18
|
ad2antll |
|
20 |
15 17 19
|
subsdid |
|
21 |
|
nnmulscl |
|
22 |
21
|
adantr |
|
23 |
22
|
nnsnod |
|
24 |
|
simprl |
|
25 |
|
simplr |
|
26 |
|
nnmulscl |
|
27 |
24 25 26
|
syl2anc |
|
28 |
27
|
nnsnod |
|
29 |
23 28
|
subscld |
|
30 |
|
nnmulscl |
|
31 |
30
|
ad2ant2rl |
|
32 |
31
|
nnsnod |
|
33 |
|
nnmulscl |
|
34 |
33
|
adantl |
|
35 |
34
|
nnsnod |
|
36 |
29 32 35
|
subsubs2d |
|
37 |
12 14 17
|
subsdird |
|
38 |
12 14 19
|
subsdird |
|
39 |
37 38
|
oveq12d |
|
40 |
23 35 28 32
|
addsubs4d |
|
41 |
36 39 40
|
3eqtr4d |
|
42 |
20 41
|
eqtrd |
|
43 |
|
nnaddscl |
|
44 |
22 34 43
|
syl2anc |
|
45 |
|
nnaddscl |
|
46 |
27 31 45
|
syl2anc |
|
47 |
|
eqid |
|
48 |
|
rspceov |
|
49 |
47 48
|
mp3an3 |
|
50 |
44 46 49
|
syl2anc |
|
51 |
|
elzs |
|
52 |
50 51
|
sylibr |
|
53 |
42 52
|
eqeltrd |
|
54 |
|
oveq12 |
|
55 |
54
|
eleq1d |
|
56 |
53 55
|
syl5ibrcom |
|
57 |
56
|
rexlimdvva |
|
58 |
57
|
rexlimivv |
|
59 |
10 58
|
sylbir |
|
60 |
4 6 59
|
syl2anc |
|