Metamath Proof Explorer


Theorem zndvds

Description: Express equality of equivalence classes in ZZ / n ZZ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses zncyg.y Y=/N
zndvds.2 L=ℤRHomY
Assertion zndvds N0ABLA=LBNAB

Proof

Step Hyp Ref Expression
1 zncyg.y Y=/N
2 zndvds.2 L=ℤRHomY
3 eqcom LA=LBLB=LA
4 eqid RSpanring=RSpanring
5 eqid ring~QGRSpanringN=ring~QGRSpanringN
6 4 5 1 2 znzrhval N0BLB=Bring~QGRSpanringN
7 6 3adant2 N0ABLB=Bring~QGRSpanringN
8 4 5 1 2 znzrhval N0ALA=Aring~QGRSpanringN
9 8 3adant3 N0ABLA=Aring~QGRSpanringN
10 7 9 eqeq12d N0ABLB=LABring~QGRSpanringN=Aring~QGRSpanringN
11 zringring ringRing
12 nn0z N0N
13 12 3ad2ant1 N0ABN
14 13 snssd N0ABN
15 zringbas =Basering
16 eqid LIdealring=LIdealring
17 4 15 16 rspcl ringRingNRSpanringNLIdealring
18 11 14 17 sylancr N0ABRSpanringNLIdealring
19 16 lidlsubg ringRingRSpanringNLIdealringRSpanringNSubGrpring
20 11 18 19 sylancr N0ABRSpanringNSubGrpring
21 15 5 eqger RSpanringNSubGrpringring~QGRSpanringNEr
22 20 21 syl N0ABring~QGRSpanringNEr
23 simp3 N0ABB
24 22 23 erth N0ABBring~QGRSpanringNABring~QGRSpanringN=Aring~QGRSpanringN
25 zringabl ringAbel
26 15 16 lidlss RSpanringNLIdealringRSpanringN
27 18 26 syl N0ABRSpanringN
28 eqid -ring=-ring
29 15 28 5 eqgabl ringAbelRSpanringNBring~QGRSpanringNABAA-ringBRSpanringN
30 25 27 29 sylancr N0ABBring~QGRSpanringNABAA-ringBRSpanringN
31 simp2 N0ABA
32 23 31 jca N0ABBA
33 32 biantrurd N0ABA-ringBRSpanringNBAA-ringBRSpanringN
34 df-3an BAA-ringBRSpanringNBAA-ringBRSpanringN
35 33 34 bitr4di N0ABA-ringBRSpanringNBAA-ringBRSpanringN
36 zsubrg SubRingfld
37 subrgsubg SubRingfldSubGrpfld
38 36 37 mp1i N0ABSubGrpfld
39 cnfldsub =-fld
40 df-zring ring=fld𝑠
41 39 40 28 subgsub SubGrpfldABAB=A-ringB
42 38 41 syld3an1 N0ABAB=A-ringB
43 42 eqcomd N0ABA-ringB=AB
44 dvdsrzring =rring
45 15 4 44 rspsn ringRingNRSpanringN=x|Nx
46 11 13 45 sylancr N0ABRSpanringN=x|Nx
47 43 46 eleq12d N0ABA-ringBRSpanringNABx|Nx
48 ovex ABV
49 breq2 x=ABNxNAB
50 48 49 elab ABx|NxNAB
51 47 50 bitrdi N0ABA-ringBRSpanringNNAB
52 30 35 51 3bitr2d N0ABBring~QGRSpanringNANAB
53 10 24 52 3bitr2d N0ABLB=LANAB
54 3 53 bitrid N0ABLA=LBNAB