Description: Express equality of equivalence classes in ZZ / n ZZ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zncyg.y | |
|
zndvds.2 | |
||
Assertion | zndvds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zncyg.y | |
|
2 | zndvds.2 | |
|
3 | eqcom | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 1 2 | znzrhval | |
7 | 6 | 3adant2 | |
8 | 4 5 1 2 | znzrhval | |
9 | 8 | 3adant3 | |
10 | 7 9 | eqeq12d | |
11 | zringring | |
|
12 | nn0z | |
|
13 | 12 | 3ad2ant1 | |
14 | 13 | snssd | |
15 | zringbas | |
|
16 | eqid | |
|
17 | 4 15 16 | rspcl | |
18 | 11 14 17 | sylancr | |
19 | 16 | lidlsubg | |
20 | 11 18 19 | sylancr | |
21 | 15 5 | eqger | |
22 | 20 21 | syl | |
23 | simp3 | |
|
24 | 22 23 | erth | |
25 | zringabl | |
|
26 | 15 16 | lidlss | |
27 | 18 26 | syl | |
28 | eqid | |
|
29 | 15 28 5 | eqgabl | |
30 | 25 27 29 | sylancr | |
31 | simp2 | |
|
32 | 23 31 | jca | |
33 | 32 | biantrurd | |
34 | df-3an | |
|
35 | 33 34 | bitr4di | |
36 | zsubrg | |
|
37 | subrgsubg | |
|
38 | 36 37 | mp1i | |
39 | cnfldsub | |
|
40 | df-zring | |
|
41 | 39 40 28 | subgsub | |
42 | 38 41 | syld3an1 | |
43 | 42 | eqcomd | |
44 | dvdsrzring | |
|
45 | 15 4 44 | rspsn | |
46 | 11 13 45 | sylancr | |
47 | 43 46 | eleq12d | |
48 | ovex | |
|
49 | breq2 | |
|
50 | 48 49 | elab | |
51 | 47 50 | bitrdi | |
52 | 30 35 51 | 3bitr2d | |
53 | 10 24 52 | 3bitr2d | |
54 | 3 53 | bitrid | |