Metamath Proof Explorer


Theorem zorn2lem4

Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 F=recsfVιvC|uC¬uwv
zorn2lem.4 C=zA|granfgRz
zorn2lem.5 D=zA|gFxgRz
Assertion zorn2lem4 RPoAwWeAxOnD=

Proof

Step Hyp Ref Expression
1 zorn2lem.3 F=recsfVιvC|uC¬uwv
2 zorn2lem.4 C=zA|granfgRz
3 zorn2lem.5 D=zA|gFxgRz
4 pm3.24 ¬ranFV¬ranFV
5 df-ne D¬D=
6 5 ralbii xOnDxOn¬D=
7 df-ral xOnDxxOnD
8 ralnex xOn¬D=¬xOnD=
9 6 7 8 3bitr3i xxOnD¬xOnD=
10 weso wWeAwOrA
11 10 adantr wWeAxxOnDwOrA
12 vex wV
13 soex wOrAwVAV
14 11 12 13 sylancl wWeAxxOnDAV
15 1 tfr1 FFnOn
16 fvelrnb FFnOnyranFxOnFx=y
17 15 16 ax-mp yranFxOnFx=y
18 nfv xwWeA
19 nfa1 xxxOnD
20 18 19 nfan xwWeAxxOnD
21 nfv xyA
22 3 ssrab3 DA
23 1 2 3 zorn2lem1 xOnwWeADFxD
24 22 23 sselid xOnwWeADFxA
25 eleq1 Fx=yFxAyA
26 24 25 syl5ibcom xOnwWeADFx=yyA
27 26 exp32 xOnwWeADFx=yyA
28 27 com12 wWeAxOnDFx=yyA
29 28 a2d wWeAxOnDxOnFx=yyA
30 29 spsd wWeAxxOnDxOnFx=yyA
31 30 imp wWeAxxOnDxOnFx=yyA
32 20 21 31 rexlimd wWeAxxOnDxOnFx=yyA
33 17 32 biimtrid wWeAxxOnDyranFyA
34 33 ssrdv wWeAxxOnDranFA
35 14 34 ssexd wWeAxxOnDranFV
36 35 ex wWeAxxOnDranFV
37 36 adantl RPoAwWeAxxOnDranFV
38 1 2 3 zorn2lem3 RPoAxOnwWeADyx¬Fx=Fy
39 38 exp45 RPoAxOnwWeADyx¬Fx=Fy
40 39 com23 RPoAwWeAxOnDyx¬Fx=Fy
41 40 imp RPoAwWeAxOnDyx¬Fx=Fy
42 41 a2d RPoAwWeAxOnDxOnyx¬Fx=Fy
43 42 imp4a RPoAwWeAxOnDxOnyx¬Fx=Fy
44 43 alrimdv RPoAwWeAxOnDyxOnyx¬Fx=Fy
45 44 alimdv RPoAwWeAxxOnDxyxOnyx¬Fx=Fy
46 r2al xOnyx¬Fx=FyxyxOnyx¬Fx=Fy
47 45 46 syl6ibr RPoAwWeAxxOnDxOnyx¬Fx=Fy
48 ssid OnOn
49 15 tz7.48lem OnOnxOnyx¬Fx=FyFunFOn-1
50 48 49 mpan xOnyx¬Fx=FyFunFOn-1
51 fnrel FFnOnRelF
52 15 51 ax-mp RelF
53 15 fndmi domF=On
54 53 eqimssi domFOn
55 relssres RelFdomFOnFOn=F
56 52 54 55 mp2an FOn=F
57 56 cnveqi FOn-1=F-1
58 57 funeqi FunFOn-1FunF-1
59 50 58 sylib xOnyx¬Fx=FyFunF-1
60 47 59 syl6 RPoAwWeAxxOnDFunF-1
61 onprc ¬OnV
62 funrnex domF-1VFunF-1ranF-1V
63 62 com12 FunF-1domF-1VranF-1V
64 df-rn ranF=domF-1
65 64 eleq1i ranFVdomF-1V
66 dfdm4 domF=ranF-1
67 53 66 eqtr3i On=ranF-1
68 67 eleq1i OnVranF-1V
69 63 65 68 3imtr4g FunF-1ranFVOnV
70 61 69 mtoi FunF-1¬ranFV
71 60 70 syl6 RPoAwWeAxxOnD¬ranFV
72 37 71 jcad RPoAwWeAxxOnDranFV¬ranFV
73 9 72 biimtrrid RPoAwWeA¬xOnD=ranFV¬ranFV
74 4 73 mt3i RPoAwWeAxOnD=