| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qtopcmp.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | f1ofo | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  𝐹 : 𝑋 –onto→ 𝑌 ) | 
						
							| 3 | 1 | elqtop2 | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( 𝑥  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 ) ) ) | 
						
							| 4 | 1 | elqtop2 | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( 𝑦  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) ) ) | 
						
							| 5 | 3 4 | anbi12d | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( ( 𝑥  ∈  ( 𝐽  qTop  𝐹 )  ∧  𝑦  ∈  ( 𝐽  qTop  𝐹 ) )  ↔  ( ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) ) ) ) | 
						
							| 6 | 2 5 | sylan2 | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( ( 𝑥  ∈  ( 𝐽  qTop  𝐹 )  ∧  𝑦  ∈  ( 𝐽  qTop  𝐹 ) )  ↔  ( ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) ) ) ) | 
						
							| 7 |  | simpl1l | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  𝐽  ∈  TopBases ) | 
						
							| 8 |  | simpl2r | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 ) | 
						
							| 9 |  | simpl3r | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) | 
						
							| 10 |  | simpl1r | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 11 |  | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | 
						
							| 12 |  | f1ofn | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋  →  ◡ 𝐹  Fn  𝑌 ) | 
						
							| 13 | 10 11 12 | 3syl | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  ◡ 𝐹  Fn  𝑌 ) | 
						
							| 14 |  | simpl2l | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  𝑥  ⊆  𝑌 ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  𝑧  ∈  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 16 | 15 | elin1d | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  𝑧  ∈  𝑥 ) | 
						
							| 17 |  | fnfvima | ⊢ ( ( ◡ 𝐹  Fn  𝑌  ∧  𝑥  ⊆  𝑌  ∧  𝑧  ∈  𝑥 )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 18 | 13 14 16 17 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 19 |  | simpl3l | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  𝑦  ⊆  𝑌 ) | 
						
							| 20 | 15 | elin2d | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  𝑧  ∈  𝑦 ) | 
						
							| 21 |  | fnfvima | ⊢ ( ( ◡ 𝐹  Fn  𝑌  ∧  𝑦  ⊆  𝑌  ∧  𝑧  ∈  𝑦 )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( ◡ 𝐹  “  𝑦 ) ) | 
						
							| 22 | 13 19 20 21 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( ◡ 𝐹  “  𝑦 ) ) | 
						
							| 23 | 18 22 | elind | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) | 
						
							| 24 |  | basis2 | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( ( ◡ 𝐹  “  𝑦 )  ∈  𝐽  ∧  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) )  →  ∃ 𝑤  ∈  𝐽 ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) | 
						
							| 25 | 7 8 9 23 24 | syl22anc | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  ∃ 𝑤  ∈  𝐽 ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) | 
						
							| 26 | 10 | adantr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 27 |  | inss1 | ⊢ ( 𝑥  ∩  𝑦 )  ⊆  𝑥 | 
						
							| 28 |  | simp2l | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  →  𝑥  ⊆  𝑌 ) | 
						
							| 29 | 27 28 | sstrid | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  →  ( 𝑥  ∩  𝑦 )  ⊆  𝑌 ) | 
						
							| 30 | 29 | sselda | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  𝑧  ∈  𝑌 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝑧  ∈  𝑌 ) | 
						
							| 32 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  𝑧  ∈  𝑌 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  =  𝑧 ) | 
						
							| 33 | 26 31 32 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  =  𝑧 ) | 
						
							| 34 |  | f1ofn | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  𝐹  Fn  𝑋 ) | 
						
							| 35 | 26 34 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝐹  Fn  𝑋 ) | 
						
							| 36 |  | simprrr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) | 
						
							| 37 |  | inss1 | ⊢ ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) )  ⊆  ( ◡ 𝐹  “  𝑥 ) | 
						
							| 38 | 36 37 | sstrdi | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝑤  ⊆  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 39 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑥 )  ⊆  dom  𝐹 | 
						
							| 40 |  | f1odm | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  dom  𝐹  =  𝑋 ) | 
						
							| 41 | 26 40 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  dom  𝐹  =  𝑋 ) | 
						
							| 42 | 39 41 | sseqtrid | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( ◡ 𝐹  “  𝑥 )  ⊆  𝑋 ) | 
						
							| 43 | 38 42 | sstrd | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝑤  ⊆  𝑋 ) | 
						
							| 44 |  | simprrl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤 ) | 
						
							| 45 |  | fnfvima | ⊢ ( ( 𝐹  Fn  𝑋  ∧  𝑤  ⊆  𝑋  ∧  ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑤 ) ) | 
						
							| 46 | 35 43 44 45 | syl3anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑤 ) ) | 
						
							| 47 | 33 46 | eqeltrrd | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝑧  ∈  ( 𝐹  “  𝑤 ) ) | 
						
							| 48 |  | imassrn | ⊢ ( 𝐹  “  𝑤 )  ⊆  ran  𝐹 | 
						
							| 49 | 26 2 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝐹 : 𝑋 –onto→ 𝑌 ) | 
						
							| 50 |  | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  ran  𝐹  =  𝑌 ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ran  𝐹  =  𝑌 ) | 
						
							| 52 | 48 51 | sseqtrid | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( 𝐹  “  𝑤 )  ⊆  𝑌 ) | 
						
							| 53 |  | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  𝐹 : 𝑋 –1-1→ 𝑌 ) | 
						
							| 54 | 26 53 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝐹 : 𝑋 –1-1→ 𝑌 ) | 
						
							| 55 |  | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝑤  ⊆  𝑋 )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  =  𝑤 ) | 
						
							| 56 | 54 43 55 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  =  𝑤 ) | 
						
							| 57 |  | simprl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝑤  ∈  𝐽 ) | 
						
							| 58 | 56 57 | eqeltrd | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  ∈  𝐽 ) | 
						
							| 59 | 7 | adantr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝐽  ∈  TopBases ) | 
						
							| 60 | 1 | elqtop2 | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( ( 𝐹  “  𝑤 )  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( ( 𝐹  “  𝑤 )  ⊆  𝑌  ∧  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  ∈  𝐽 ) ) ) | 
						
							| 61 | 59 49 60 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( ( 𝐹  “  𝑤 )  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( ( 𝐹  “  𝑤 )  ⊆  𝑌  ∧  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  ∈  𝐽 ) ) ) | 
						
							| 62 | 52 58 61 | mpbir2and | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( 𝐹  “  𝑤 )  ∈  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 63 |  | fnfun | ⊢ ( 𝐹  Fn  𝑋  →  Fun  𝐹 ) | 
						
							| 64 |  | inpreima | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  ( 𝑥  ∩  𝑦 ) )  =  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) | 
						
							| 65 | 35 63 64 | 3syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( ◡ 𝐹  “  ( 𝑥  ∩  𝑦 ) )  =  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) | 
						
							| 66 | 36 65 | sseqtrrd | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝑤  ⊆  ( ◡ 𝐹  “  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 67 | 35 63 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  Fun  𝐹 ) | 
						
							| 68 | 38 39 | sstrdi | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝑤  ⊆  dom  𝐹 ) | 
						
							| 69 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  𝑤  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  𝑤 )  ⊆  ( 𝑥  ∩  𝑦 )  ↔  𝑤  ⊆  ( ◡ 𝐹  “  ( 𝑥  ∩  𝑦 ) ) ) ) | 
						
							| 70 | 67 68 69 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( ( 𝐹  “  𝑤 )  ⊆  ( 𝑥  ∩  𝑦 )  ↔  𝑤  ⊆  ( ◡ 𝐹  “  ( 𝑥  ∩  𝑦 ) ) ) ) | 
						
							| 71 | 66 70 | mpbird | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( 𝐹  “  𝑤 )  ⊆  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 72 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 73 | 72 | inex1 | ⊢ ( 𝑥  ∩  𝑦 )  ∈  V | 
						
							| 74 | 73 | elpw2 | ⊢ ( ( 𝐹  “  𝑤 )  ∈  𝒫  ( 𝑥  ∩  𝑦 )  ↔  ( 𝐹  “  𝑤 )  ⊆  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 75 | 71 74 | sylibr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( 𝐹  “  𝑤 )  ∈  𝒫  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 76 | 62 75 | elind | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  ( 𝐹  “  𝑤 )  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 77 |  | elunii | ⊢ ( ( 𝑧  ∈  ( 𝐹  “  𝑤 )  ∧  ( 𝐹  “  𝑤 )  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) )  →  𝑧  ∈  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 78 | 47 76 77 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  ∧  ( 𝑤  ∈  𝐽  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑤  ∧  𝑤  ⊆  ( ( ◡ 𝐹  “  𝑥 )  ∩  ( ◡ 𝐹  “  𝑦 ) ) ) ) )  →  𝑧  ∈  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 79 | 25 78 | rexlimddv | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  ∧  𝑧  ∈  ( 𝑥  ∩  𝑦 ) )  →  𝑧  ∈  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 80 | 79 | ex | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  →  𝑧  ∈  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) ) | 
						
							| 81 | 80 | ssrdv | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  →  ( 𝑥  ∩  𝑦 )  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 82 | 81 | 3expib | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( ( ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  ∧  ( 𝑦  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑦 )  ∈  𝐽 ) )  →  ( 𝑥  ∩  𝑦 )  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) ) | 
						
							| 83 | 6 82 | sylbid | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( ( 𝑥  ∈  ( 𝐽  qTop  𝐹 )  ∧  𝑦  ∈  ( 𝐽  qTop  𝐹 ) )  →  ( 𝑥  ∩  𝑦 )  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) ) | 
						
							| 84 | 83 | ralrimivv | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ∀ 𝑥  ∈  ( 𝐽  qTop  𝐹 ) ∀ 𝑦  ∈  ( 𝐽  qTop  𝐹 ) ( 𝑥  ∩  𝑦 )  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 85 |  | ovex | ⊢ ( 𝐽  qTop  𝐹 )  ∈  V | 
						
							| 86 |  | isbasisg | ⊢ ( ( 𝐽  qTop  𝐹 )  ∈  V  →  ( ( 𝐽  qTop  𝐹 )  ∈  TopBases  ↔  ∀ 𝑥  ∈  ( 𝐽  qTop  𝐹 ) ∀ 𝑦  ∈  ( 𝐽  qTop  𝐹 ) ( 𝑥  ∩  𝑦 )  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) ) | 
						
							| 87 | 85 86 | ax-mp | ⊢ ( ( 𝐽  qTop  𝐹 )  ∈  TopBases  ↔  ∀ 𝑥  ∈  ( 𝐽  qTop  𝐹 ) ∀ 𝑦  ∈  ( 𝐽  qTop  𝐹 ) ( 𝑥  ∩  𝑦 )  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 88 | 84 87 | sylibr | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝐽  qTop  𝐹 )  ∈  TopBases ) |