Metamath Proof Explorer


Theorem cpmadugsumfi

Description: The product of the characteristic matrix of a given matrix and its adjunct represented as finite sum. (Contributed by AV, 7-Nov-2019) (Proof shortened by AV, 29-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
cpmadugsum.p 𝑃 = ( Poly1𝑅 )
cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cpmadugsum.x 𝑋 = ( var1𝑅 )
cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cpmadugsum.m · = ( ·𝑠𝑌 )
cpmadugsum.r × = ( .r𝑌 )
cpmadugsum.1 1 = ( 1r𝑌 )
cpmadugsum.g + = ( +g𝑌 )
cpmadugsum.s = ( -g𝑌 )
cpmadugsum.i 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) )
cpmadugsum.j 𝐽 = ( 𝑁 maAdju 𝑃 )
Assertion cpmadugsumfi ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmadugsum.p 𝑃 = ( Poly1𝑅 )
4 cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
6 cpmadugsum.x 𝑋 = ( var1𝑅 )
7 cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
8 cpmadugsum.m · = ( ·𝑠𝑌 )
9 cpmadugsum.r × = ( .r𝑌 )
10 cpmadugsum.1 1 = ( 1r𝑌 )
11 cpmadugsum.g + = ( +g𝑌 )
12 cpmadugsum.s = ( -g𝑌 )
13 cpmadugsum.i 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) )
14 cpmadugsum.j 𝐽 = ( 𝑁 maAdju 𝑃 )
15 oveq2 ( ( 𝐽𝐼 ) = ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝐼 × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) )
16 13 a1i ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) )
17 16 oveq1d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 𝐼 × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) = ( ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) )
18 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
19 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
20 19 anim2i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
21 20 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
22 21 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
23 3 4 pmatring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring )
24 22 23 syl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → 𝑌 ∈ Ring )
25 3 4 pmatlmod ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ LMod )
26 19 25 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ LMod )
27 19 adantl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring )
28 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
29 6 3 28 vr1cl ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) )
30 27 29 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) )
31 3 ply1crng ( 𝑅 ∈ CRing → 𝑃 ∈ CRing )
32 4 matsca2 ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) )
33 31 32 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) )
34 33 fveq2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
35 30 34 eleqtrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
36 19 23 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring )
37 18 10 ringidcl ( 𝑌 ∈ Ring → 1 ∈ ( Base ‘ 𝑌 ) )
38 36 37 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 1 ∈ ( Base ‘ 𝑌 ) )
39 eqid ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 )
40 eqid ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) )
41 18 39 8 40 lmodvscl ( ( 𝑌 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 1 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) )
42 26 35 38 41 syl3anc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) )
43 42 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) )
44 43 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) )
45 5 1 2 3 4 mat2pmatbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
46 19 45 syl3an2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
47 46 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
48 ringcmn ( 𝑌 ∈ Ring → 𝑌 ∈ CMnd )
49 36 48 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ CMnd )
50 49 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ CMnd )
51 50 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → 𝑌 ∈ CMnd )
52 fzfid ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 0 ... 𝑠 ) ∈ Fin )
53 21 ad3antrrr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ( 0 ... 𝑠 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
54 elmapi ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 )
55 ffvelrn ( ( 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵𝑛 ∈ ( 0 ... 𝑠 ) ) → ( 𝑏𝑛 ) ∈ 𝐵 )
56 55 ex ( 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 → ( 𝑛 ∈ ( 0 ... 𝑠 ) → ( 𝑏𝑛 ) ∈ 𝐵 ) )
57 54 56 syl ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) → ( 𝑛 ∈ ( 0 ... 𝑠 ) → ( 𝑏𝑛 ) ∈ 𝐵 ) )
58 57 adantl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 𝑛 ∈ ( 0 ... 𝑠 ) → ( 𝑏𝑛 ) ∈ 𝐵 ) )
59 58 imp ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ( 0 ... 𝑠 ) ) → ( 𝑏𝑛 ) ∈ 𝐵 )
60 elfznn0 ( 𝑛 ∈ ( 0 ... 𝑠 ) → 𝑛 ∈ ℕ0 )
61 60 adantl ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ( 0 ... 𝑠 ) ) → 𝑛 ∈ ℕ0 )
62 1 2 5 3 4 18 8 7 6 mat2pmatscmxcl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( ( 𝑏𝑛 ) ∈ 𝐵𝑛 ∈ ℕ0 ) ) → ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ∈ ( Base ‘ 𝑌 ) )
63 53 59 61 62 syl12anc ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ∈ ( Base ‘ 𝑌 ) )
64 63 ralrimiva ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ∀ 𝑛 ∈ ( 0 ... 𝑠 ) ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ∈ ( Base ‘ 𝑌 ) )
65 18 51 52 64 gsummptcl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ∈ ( Base ‘ 𝑌 ) )
66 18 9 12 24 44 47 65 rngsubdir ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) = ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
67 oveq1 ( 𝑛 = 𝑖 → ( 𝑛 𝑋 ) = ( 𝑖 𝑋 ) )
68 2fveq3 ( 𝑛 = 𝑖 → ( 𝑇 ‘ ( 𝑏𝑛 ) ) = ( 𝑇 ‘ ( 𝑏𝑖 ) ) )
69 67 68 oveq12d ( 𝑛 = 𝑖 → ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) = ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) )
70 69 cbvmptv ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) )
71 70 oveq2i ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) )
72 71 oveq2i ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) = ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) )
73 71 oveq2i ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) = ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) )
74 72 73 oveq12i ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) = ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) )
75 1 2 3 4 5 6 7 8 9 10 11 12 cpmadugsumlemF ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )
76 75 anassrs ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )
77 74 76 syl5eq ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )
78 17 66 77 3eqtrd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 𝐼 × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )
79 15 78 sylan9eqr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ ( 𝐽𝐼 ) = ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )
80 4 14 18 maduf ( 𝑃 ∈ CRing → 𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) )
81 31 80 syl ( 𝑅 ∈ CRing → 𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) )
82 81 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) )
83 1 2 3 4 6 5 12 8 10 13 chmatcl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝐼 ∈ ( Base ‘ 𝑌 ) )
84 19 83 syl3an2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐼 ∈ ( Base ‘ 𝑌 ) )
85 82 84 ffvelrnd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐽𝐼 ) ∈ ( Base ‘ 𝑌 ) )
86 3 4 18 8 7 6 5 1 2 pmatcollpw3fi1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ ( 𝐽𝐼 ) ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐽𝐼 ) = ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) )
87 85 86 syld3an3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐽𝐼 ) = ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) )
88 79 87 reximddv2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )