Step |
Hyp |
Ref |
Expression |
1 |
|
dfac3 |
⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
2 |
|
nfra1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) |
3 |
|
rsp |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
4 |
|
equid |
⊢ 𝑧 = 𝑧 |
5 |
|
neeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅ ) ) |
6 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = 𝑧 ↔ 𝑧 = 𝑧 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) ↔ ( 𝑧 ≠ ∅ ∧ 𝑧 = 𝑧 ) ) ) |
8 |
7
|
rspcev |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ ( 𝑧 ≠ ∅ ∧ 𝑧 = 𝑧 ) ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) ) |
9 |
4 8
|
mpanr2 |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑢 = 𝑧 → ( 𝑓 ‘ 𝑢 ) = ( 𝑓 ‘ 𝑧 ) ) |
11 |
10
|
preq1d |
⊢ ( 𝑢 = 𝑧 → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } = { ( 𝑓 ‘ 𝑧 ) , 𝑢 } ) |
12 |
|
preq2 |
⊢ ( 𝑢 = 𝑧 → { ( 𝑓 ‘ 𝑧 ) , 𝑢 } = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) |
13 |
11 12
|
eqtr2d |
⊢ ( 𝑢 = 𝑧 → { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) |
14 |
13
|
anim2i |
⊢ ( ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) → ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
15 |
14
|
reximi |
⊢ ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
16 |
9 15
|
syl |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
17 |
|
prex |
⊢ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ V |
18 |
|
eqeq1 |
⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
21 |
17 20
|
elab |
⊢ ( { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
22 |
16 21
|
sylibr |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ) |
23 |
|
vex |
⊢ 𝑧 ∈ V |
24 |
23
|
prid2 |
⊢ 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } |
25 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑧 ) ∈ V |
26 |
25
|
prid1 |
⊢ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } |
27 |
24 26
|
pm3.2i |
⊢ ( 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) |
28 |
|
eleq2 |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( 𝑧 ∈ 𝑣 ↔ 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) |
29 |
|
eleq2 |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ↔ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) |
30 |
28 29
|
anbi12d |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ↔ ( 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) ) |
31 |
30
|
rspcev |
⊢ ( ( { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) → ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) |
32 |
22 27 31
|
sylancl |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) |
33 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( 𝑤 ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
34 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( 𝑤 ∈ 𝑣 ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) |
35 |
34
|
anbi2d |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) ) |
36 |
35
|
rexbidv |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) ) |
37 |
33 36
|
anbi12d |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) ) ) |
38 |
25 37
|
spcev |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
39 |
32 38
|
sylan2 |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
40 |
39
|
ex |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
41 |
3 40
|
syl8 |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) ) |
42 |
41
|
impd |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) |
43 |
42
|
pm2.43d |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
44 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
45 |
|
vex |
⊢ 𝑣 ∈ V |
46 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑣 → ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
47 |
46
|
anbi2d |
⊢ ( 𝑔 = 𝑣 → ( ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
48 |
47
|
rexbidv |
⊢ ( 𝑔 = 𝑣 → ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
49 |
45 48
|
elab |
⊢ ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
50 |
|
neeq1 |
⊢ ( 𝑧 = 𝑢 → ( 𝑧 ≠ ∅ ↔ 𝑢 ≠ ∅ ) ) |
51 |
|
fveq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑢 ) ) |
52 |
51
|
eleq1d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑢 ) ∈ 𝑧 ) ) |
53 |
|
eleq2 |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) |
54 |
52 53
|
bitrd |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) |
55 |
50 54
|
imbi12d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑢 ≠ ∅ → ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) ) |
56 |
55
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) ) |
57 |
|
elneq |
⊢ ( 𝑤 ∈ 𝑧 → 𝑤 ≠ 𝑧 ) |
58 |
57
|
neneqd |
⊢ ( 𝑤 ∈ 𝑧 → ¬ 𝑤 = 𝑧 ) |
59 |
|
vex |
⊢ 𝑤 ∈ V |
60 |
|
neqne |
⊢ ( ¬ 𝑤 = 𝑧 → 𝑤 ≠ 𝑧 ) |
61 |
|
prel12g |
⊢ ( ( 𝑤 ∈ V ∧ 𝑧 ∈ V ∧ 𝑤 ≠ 𝑧 ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
62 |
59 23 60 61
|
mp3an12i |
⊢ ( ¬ 𝑤 = 𝑧 → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
63 |
|
eleq2 |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑤 ∈ 𝑣 ↔ 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
64 |
|
eleq2 |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑧 ∈ 𝑣 ↔ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
65 |
63 64
|
anbi12d |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ↔ ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
66 |
|
ancom |
⊢ ( ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
67 |
65 66
|
bitr3di |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
68 |
62 67
|
sylan9bbr |
⊢ ( ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ ¬ 𝑤 = 𝑧 ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
69 |
58 68
|
sylan2 |
⊢ ( ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑤 ∈ 𝑧 ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
70 |
69
|
adantrr |
⊢ ( ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
71 |
70
|
pm5.32da |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
72 |
23
|
preleq |
⊢ ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( 𝑤 = ( 𝑓 ‘ 𝑢 ) ∧ 𝑧 = 𝑢 ) ) |
73 |
71 72
|
syl6bir |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → ( 𝑤 = ( 𝑓 ‘ 𝑢 ) ∧ 𝑧 = 𝑢 ) ) ) |
74 |
51
|
eqeq2d |
⊢ ( 𝑧 = 𝑢 → ( 𝑤 = ( 𝑓 ‘ 𝑧 ) ↔ 𝑤 = ( 𝑓 ‘ 𝑢 ) ) ) |
75 |
74
|
biimparc |
⊢ ( ( 𝑤 = ( 𝑓 ‘ 𝑢 ) ∧ 𝑧 = 𝑢 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) |
76 |
73 75
|
syl6 |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
77 |
76
|
exp4c |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑤 ∈ 𝑧 → ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
78 |
77
|
com13 |
⊢ ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 → ( 𝑤 ∈ 𝑧 → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
79 |
56 78
|
syl8 |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑤 ∈ 𝑧 → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) ) ) |
80 |
79
|
com4r |
⊢ ( 𝑤 ∈ 𝑧 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) ) ) |
81 |
80
|
imp |
⊢ ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) ) |
82 |
81
|
imp4a |
⊢ ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑢 ∈ 𝑥 → ( ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
83 |
82
|
com3l |
⊢ ( 𝑢 ∈ 𝑥 → ( ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
84 |
83
|
rexlimiv |
⊢ ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
85 |
49 84
|
sylbi |
⊢ ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
86 |
85
|
expd |
⊢ ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( 𝑤 ∈ 𝑧 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
87 |
86
|
com13 |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑤 ∈ 𝑧 → ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
88 |
87
|
imp4b |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ 𝑧 ) → ( ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
89 |
88
|
exlimdv |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ 𝑧 ) → ( ∃ 𝑣 ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
90 |
44 89
|
syl5bi |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ 𝑧 ) → ( ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
91 |
90
|
expimpd |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
92 |
91
|
alrimiv |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑤 ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
93 |
|
mo2icl |
⊢ ( ∀ 𝑤 ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) → ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
94 |
92 93
|
syl |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
95 |
43 94
|
jctird |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ∧ ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) |
96 |
|
df-reu |
⊢ ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃! 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
97 |
|
df-eu |
⊢ ( ∃! 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ∧ ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
98 |
96 97
|
bitri |
⊢ ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ∧ ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
99 |
95 98
|
syl6ibr |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
100 |
99
|
expd |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
101 |
2 100
|
ralrimi |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
102 |
|
vex |
⊢ 𝑓 ∈ V |
103 |
102
|
rnex |
⊢ ran 𝑓 ∈ V |
104 |
|
p0ex |
⊢ { ∅ } ∈ V |
105 |
103 104
|
unex |
⊢ ( ran 𝑓 ∪ { ∅ } ) ∈ V |
106 |
|
vex |
⊢ 𝑥 ∈ V |
107 |
105 106
|
unex |
⊢ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ∈ V |
108 |
107
|
pwex |
⊢ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ∈ V |
109 |
|
ssun1 |
⊢ ( ran 𝑓 ∪ { ∅ } ) ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) |
110 |
|
fvrn0 |
⊢ ( 𝑓 ‘ 𝑢 ) ∈ ( ran 𝑓 ∪ { ∅ } ) |
111 |
109 110
|
sselii |
⊢ ( 𝑓 ‘ 𝑢 ) ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) |
112 |
|
elun2 |
⊢ ( 𝑢 ∈ 𝑥 → 𝑢 ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
113 |
|
prssi |
⊢ ( ( ( 𝑓 ‘ 𝑢 ) ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ∧ 𝑢 ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
114 |
111 112 113
|
sylancr |
⊢ ( 𝑢 ∈ 𝑥 → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
115 |
|
prex |
⊢ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ V |
116 |
115
|
elpw |
⊢ ( { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ↔ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
117 |
114 116
|
sylibr |
⊢ ( 𝑢 ∈ 𝑥 → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
118 |
|
eleq1 |
⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ↔ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) ) |
119 |
117 118
|
syl5ibrcom |
⊢ ( 𝑢 ∈ 𝑥 → ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) ) |
120 |
119
|
adantld |
⊢ ( 𝑢 ∈ 𝑥 → ( ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) ) |
121 |
120
|
rexlimiv |
⊢ ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
122 |
121
|
abssi |
⊢ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ⊆ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) |
123 |
108 122
|
ssexi |
⊢ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∈ V |
124 |
|
rexeq |
⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
125 |
124
|
reubidv |
⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
126 |
125
|
imbi2d |
⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
127 |
126
|
ralbidv |
⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
128 |
123 127
|
spcev |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
129 |
101 128
|
syl |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
130 |
129
|
exlimiv |
⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
131 |
130
|
alimi |
⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
132 |
1 131
|
sylbi |
⊢ ( CHOICE → ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |