| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ctex | ⊢ ( 𝑋  ≼  ω  →  𝑋  ∈  V ) | 
						
							| 2 |  | pwexr | ⊢ ( 𝒫  𝑋  ∈  2ndω  →  𝑋  ∈  V ) | 
						
							| 3 |  | vsnex | ⊢ { 𝑥 }  ∈  V | 
						
							| 4 | 3 | 2a1i | ⊢ ( 𝑋  ∈  V  →  ( 𝑥  ∈  𝑋  →  { 𝑥 }  ∈  V ) ) | 
						
							| 5 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 6 | 5 | sneqr | ⊢ ( { 𝑥 }  =  { 𝑦 }  →  𝑥  =  𝑦 ) | 
						
							| 7 |  | sneq | ⊢ ( 𝑥  =  𝑦  →  { 𝑥 }  =  { 𝑦 } ) | 
						
							| 8 | 6 7 | impbii | ⊢ ( { 𝑥 }  =  { 𝑦 }  ↔  𝑥  =  𝑦 ) | 
						
							| 9 | 8 | 2a1i | ⊢ ( 𝑋  ∈  V  →  ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( { 𝑥 }  =  { 𝑦 }  ↔  𝑥  =  𝑦 ) ) ) | 
						
							| 10 | 4 9 | dom2lem | ⊢ ( 𝑋  ∈  V  →  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) : 𝑋 –1-1→ V ) | 
						
							| 11 |  | f1f1orn | ⊢ ( ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) : 𝑋 –1-1→ V  →  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) : 𝑋 –1-1-onto→ ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑋  ∈  V  →  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) : 𝑋 –1-1-onto→ ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) ) | 
						
							| 13 |  | f1oeng | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) : 𝑋 –1-1-onto→ ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) )  →  𝑋  ≈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) ) | 
						
							| 14 | 12 13 | mpdan | ⊢ ( 𝑋  ∈  V  →  𝑋  ≈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) ) | 
						
							| 15 |  | domen1 | ⊢ ( 𝑋  ≈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  →  ( 𝑋  ≼  ω  ↔  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑋  ∈  V  →  ( 𝑋  ≼  ω  ↔  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω ) ) | 
						
							| 17 |  | distop | ⊢ ( 𝑋  ∈  V  →  𝒫  𝑋  ∈  Top ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝑋  ∈  V  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 19 | 5 | snelpw | ⊢ ( 𝑥  ∈  𝑋  ↔  { 𝑥 }  ∈  𝒫  𝑋 ) | 
						
							| 20 | 18 19 | sylib | ⊢ ( ( 𝑋  ∈  V  ∧  𝑥  ∈  𝑋 )  →  { 𝑥 }  ∈  𝒫  𝑋 ) | 
						
							| 21 | 20 | fmpttd | ⊢ ( 𝑋  ∈  V  →  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) : 𝑋 ⟶ 𝒫  𝑋 ) | 
						
							| 22 | 21 | frnd | ⊢ ( 𝑋  ∈  V  →  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ⊆  𝒫  𝑋 ) | 
						
							| 23 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝑋  →  𝑦  ⊆  𝑋 ) | 
						
							| 24 | 23 | ad2antrl | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝑦 ) )  →  𝑦  ⊆  𝑋 ) | 
						
							| 25 |  | simprr | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝑦 ) )  →  𝑧  ∈  𝑦 ) | 
						
							| 26 | 24 25 | sseldd | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝑦 ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 27 |  | eqidd | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝑦 ) )  →  { 𝑧 }  =  { 𝑧 } ) | 
						
							| 28 |  | sneq | ⊢ ( 𝑥  =  𝑧  →  { 𝑥 }  =  { 𝑧 } ) | 
						
							| 29 | 28 | rspceeqv | ⊢ ( ( 𝑧  ∈  𝑋  ∧  { 𝑧 }  =  { 𝑧 } )  →  ∃ 𝑥  ∈  𝑋 { 𝑧 }  =  { 𝑥 } ) | 
						
							| 30 | 26 27 29 | syl2anc | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝑦 ) )  →  ∃ 𝑥  ∈  𝑋 { 𝑧 }  =  { 𝑥 } ) | 
						
							| 31 |  | vsnex | ⊢ { 𝑧 }  ∈  V | 
						
							| 32 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  =  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) | 
						
							| 33 | 32 | elrnmpt | ⊢ ( { 𝑧 }  ∈  V  →  ( { 𝑧 }  ∈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ↔  ∃ 𝑥  ∈  𝑋 { 𝑧 }  =  { 𝑥 } ) ) | 
						
							| 34 | 31 33 | ax-mp | ⊢ ( { 𝑧 }  ∈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ↔  ∃ 𝑥  ∈  𝑋 { 𝑧 }  =  { 𝑥 } ) | 
						
							| 35 | 30 34 | sylibr | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝑦 ) )  →  { 𝑧 }  ∈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) ) | 
						
							| 36 |  | vsnid | ⊢ 𝑧  ∈  { 𝑧 } | 
						
							| 37 | 36 | a1i | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝑦 ) )  →  𝑧  ∈  { 𝑧 } ) | 
						
							| 38 | 25 | snssd | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝑦 ) )  →  { 𝑧 }  ⊆  𝑦 ) | 
						
							| 39 |  | eleq2 | ⊢ ( 𝑤  =  { 𝑧 }  →  ( 𝑧  ∈  𝑤  ↔  𝑧  ∈  { 𝑧 } ) ) | 
						
							| 40 |  | sseq1 | ⊢ ( 𝑤  =  { 𝑧 }  →  ( 𝑤  ⊆  𝑦  ↔  { 𝑧 }  ⊆  𝑦 ) ) | 
						
							| 41 | 39 40 | anbi12d | ⊢ ( 𝑤  =  { 𝑧 }  →  ( ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  𝑦 )  ↔  ( 𝑧  ∈  { 𝑧 }  ∧  { 𝑧 }  ⊆  𝑦 ) ) ) | 
						
							| 42 | 41 | rspcev | ⊢ ( ( { 𝑧 }  ∈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ∧  ( 𝑧  ∈  { 𝑧 }  ∧  { 𝑧 }  ⊆  𝑦 ) )  →  ∃ 𝑤  ∈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  𝑦 ) ) | 
						
							| 43 | 35 37 38 42 | syl12anc | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑦  ∈  𝒫  𝑋  ∧  𝑧  ∈  𝑦 ) )  →  ∃ 𝑤  ∈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  𝑦 ) ) | 
						
							| 44 | 43 | ralrimivva | ⊢ ( 𝑋  ∈  V  →  ∀ 𝑦  ∈  𝒫  𝑋 ∀ 𝑧  ∈  𝑦 ∃ 𝑤  ∈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  𝑦 ) ) | 
						
							| 45 |  | basgen2 | ⊢ ( ( 𝒫  𝑋  ∈  Top  ∧  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ⊆  𝒫  𝑋  ∧  ∀ 𝑦  ∈  𝒫  𝑋 ∀ 𝑧  ∈  𝑦 ∃ 𝑤  ∈  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  𝑦 ) )  →  ( topGen ‘ ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) )  =  𝒫  𝑋 ) | 
						
							| 46 | 17 22 44 45 | syl3anc | ⊢ ( 𝑋  ∈  V  →  ( topGen ‘ ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) )  =  𝒫  𝑋 ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝑋  ∈  V  ∧  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω )  →  ( topGen ‘ ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) )  =  𝒫  𝑋 ) | 
						
							| 48 | 46 17 | eqeltrd | ⊢ ( 𝑋  ∈  V  →  ( topGen ‘ ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) )  ∈  Top ) | 
						
							| 49 |  | tgclb | ⊢ ( ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ∈  TopBases  ↔  ( topGen ‘ ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) )  ∈  Top ) | 
						
							| 50 | 48 49 | sylibr | ⊢ ( 𝑋  ∈  V  →  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ∈  TopBases ) | 
						
							| 51 |  | 2ndci | ⊢ ( ( ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ∈  TopBases  ∧  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω )  →  ( topGen ‘ ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) )  ∈  2ndω ) | 
						
							| 52 | 50 51 | sylan | ⊢ ( ( 𝑋  ∈  V  ∧  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω )  →  ( topGen ‘ ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) )  ∈  2ndω ) | 
						
							| 53 | 47 52 | eqeltrrd | ⊢ ( ( 𝑋  ∈  V  ∧  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω )  →  𝒫  𝑋  ∈  2ndω ) | 
						
							| 54 |  | is2ndc | ⊢ ( 𝒫  𝑋  ∈  2ndω  ↔  ∃ 𝑏  ∈  TopBases ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) ) | 
						
							| 55 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 56 |  | simpr | ⊢ ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 57 | 56 19 | sylib | ⊢ ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  →  { 𝑥 }  ∈  𝒫  𝑋 ) | 
						
							| 58 |  | simplrr | ⊢ ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  →  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) | 
						
							| 59 | 57 58 | eleqtrrd | ⊢ ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  →  { 𝑥 }  ∈  ( topGen ‘ 𝑏 ) ) | 
						
							| 60 |  | vsnid | ⊢ 𝑥  ∈  { 𝑥 } | 
						
							| 61 |  | tg2 | ⊢ ( ( { 𝑥 }  ∈  ( topGen ‘ 𝑏 )  ∧  𝑥  ∈  { 𝑥 } )  →  ∃ 𝑦  ∈  𝑏 ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  { 𝑥 } ) ) | 
						
							| 62 | 59 60 61 | sylancl | ⊢ ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑏 ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  { 𝑥 } ) ) | 
						
							| 63 |  | simprrl | ⊢ ( ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑏  ∧  ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  { 𝑥 } ) ) )  →  𝑥  ∈  𝑦 ) | 
						
							| 64 | 63 | snssd | ⊢ ( ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑏  ∧  ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  { 𝑥 } ) ) )  →  { 𝑥 }  ⊆  𝑦 ) | 
						
							| 65 |  | simprrr | ⊢ ( ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑏  ∧  ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  { 𝑥 } ) ) )  →  𝑦  ⊆  { 𝑥 } ) | 
						
							| 66 | 64 65 | eqssd | ⊢ ( ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑏  ∧  ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  { 𝑥 } ) ) )  →  { 𝑥 }  =  𝑦 ) | 
						
							| 67 |  | simprl | ⊢ ( ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑏  ∧  ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  { 𝑥 } ) ) )  →  𝑦  ∈  𝑏 ) | 
						
							| 68 | 66 67 | eqeltrd | ⊢ ( ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑏  ∧  ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  { 𝑥 } ) ) )  →  { 𝑥 }  ∈  𝑏 ) | 
						
							| 69 | 62 68 | rexlimddv | ⊢ ( ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  ∧  𝑥  ∈  𝑋 )  →  { 𝑥 }  ∈  𝑏 ) | 
						
							| 70 | 69 | fmpttd | ⊢ ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  →  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } ) : 𝑋 ⟶ 𝑏 ) | 
						
							| 71 | 70 | frnd | ⊢ ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  →  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ⊆  𝑏 ) | 
						
							| 72 |  | ssdomg | ⊢ ( 𝑏  ∈  V  →  ( ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ⊆  𝑏  →  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  𝑏 ) ) | 
						
							| 73 | 55 71 72 | mpsyl | ⊢ ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  →  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  𝑏 ) | 
						
							| 74 |  | simprl | ⊢ ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  →  𝑏  ≼  ω ) | 
						
							| 75 |  | domtr | ⊢ ( ( ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  𝑏  ∧  𝑏  ≼  ω )  →  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω ) | 
						
							| 76 | 73 74 75 | syl2anc | ⊢ ( ( ( 𝑋  ∈  V  ∧  𝑏  ∈  TopBases )  ∧  ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 ) )  →  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω ) | 
						
							| 77 | 76 | rexlimdva2 | ⊢ ( 𝑋  ∈  V  →  ( ∃ 𝑏  ∈  TopBases ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝒫  𝑋 )  →  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω ) ) | 
						
							| 78 | 54 77 | biimtrid | ⊢ ( 𝑋  ∈  V  →  ( 𝒫  𝑋  ∈  2ndω  →  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω ) ) | 
						
							| 79 | 78 | imp | ⊢ ( ( 𝑋  ∈  V  ∧  𝒫  𝑋  ∈  2ndω )  →  ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω ) | 
						
							| 80 | 53 79 | impbida | ⊢ ( 𝑋  ∈  V  →  ( ran  ( 𝑥  ∈  𝑋  ↦  { 𝑥 } )  ≼  ω  ↔  𝒫  𝑋  ∈  2ndω ) ) | 
						
							| 81 | 16 80 | bitrd | ⊢ ( 𝑋  ∈  V  →  ( 𝑋  ≼  ω  ↔  𝒫  𝑋  ∈  2ndω ) ) | 
						
							| 82 | 1 2 81 | pm5.21nii | ⊢ ( 𝑋  ≼  ω  ↔  𝒫  𝑋  ∈  2ndω ) |