| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ctex |
⊢ ( 𝑋 ≼ ω → 𝑋 ∈ V ) |
| 2 |
|
pwexr |
⊢ ( 𝒫 𝑋 ∈ 2ndω → 𝑋 ∈ V ) |
| 3 |
|
vsnex |
⊢ { 𝑥 } ∈ V |
| 4 |
3
|
2a1i |
⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 → { 𝑥 } ∈ V ) ) |
| 5 |
|
vex |
⊢ 𝑥 ∈ V |
| 6 |
5
|
sneqr |
⊢ ( { 𝑥 } = { 𝑦 } → 𝑥 = 𝑦 ) |
| 7 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
| 8 |
6 7
|
impbii |
⊢ ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) |
| 9 |
8
|
2a1i |
⊢ ( 𝑋 ∈ V → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) ) ) |
| 10 |
4 9
|
dom2lem |
⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 –1-1→ V ) |
| 11 |
|
f1f1orn |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 –1-1→ V → ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 –1-1-onto→ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 –1-1-onto→ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) |
| 13 |
|
f1oeng |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 –1-1-onto→ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) → 𝑋 ≈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) |
| 14 |
12 13
|
mpdan |
⊢ ( 𝑋 ∈ V → 𝑋 ≈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) |
| 15 |
|
domen1 |
⊢ ( 𝑋 ≈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) → ( 𝑋 ≼ ω ↔ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝑋 ∈ V → ( 𝑋 ≼ ω ↔ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) ) |
| 17 |
|
distop |
⊢ ( 𝑋 ∈ V → 𝒫 𝑋 ∈ Top ) |
| 18 |
|
simpr |
⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 19 |
5
|
snelpw |
⊢ ( 𝑥 ∈ 𝑋 ↔ { 𝑥 } ∈ 𝒫 𝑋 ) |
| 20 |
18 19
|
sylib |
⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
| 21 |
20
|
fmpttd |
⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 ⟶ 𝒫 𝑋 ) |
| 22 |
21
|
frnd |
⊢ ( 𝑋 ∈ V → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ⊆ 𝒫 𝑋 ) |
| 23 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) |
| 24 |
23
|
ad2antrl |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → 𝑦 ⊆ 𝑋 ) |
| 25 |
|
simprr |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ 𝑦 ) |
| 26 |
24 25
|
sseldd |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ 𝑋 ) |
| 27 |
|
eqidd |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → { 𝑧 } = { 𝑧 } ) |
| 28 |
|
sneq |
⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) |
| 29 |
28
|
rspceeqv |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ { 𝑧 } = { 𝑧 } ) → ∃ 𝑥 ∈ 𝑋 { 𝑧 } = { 𝑥 } ) |
| 30 |
26 27 29
|
syl2anc |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → ∃ 𝑥 ∈ 𝑋 { 𝑧 } = { 𝑥 } ) |
| 31 |
|
vsnex |
⊢ { 𝑧 } ∈ V |
| 32 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) |
| 33 |
32
|
elrnmpt |
⊢ ( { 𝑧 } ∈ V → ( { 𝑧 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝑋 { 𝑧 } = { 𝑥 } ) ) |
| 34 |
31 33
|
ax-mp |
⊢ ( { 𝑧 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝑋 { 𝑧 } = { 𝑥 } ) |
| 35 |
30 34
|
sylibr |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → { 𝑧 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) |
| 36 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
| 37 |
36
|
a1i |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ { 𝑧 } ) |
| 38 |
25
|
snssd |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → { 𝑧 } ⊆ 𝑦 ) |
| 39 |
|
eleq2 |
⊢ ( 𝑤 = { 𝑧 } → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ { 𝑧 } ) ) |
| 40 |
|
sseq1 |
⊢ ( 𝑤 = { 𝑧 } → ( 𝑤 ⊆ 𝑦 ↔ { 𝑧 } ⊆ 𝑦 ) ) |
| 41 |
39 40
|
anbi12d |
⊢ ( 𝑤 = { 𝑧 } → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ↔ ( 𝑧 ∈ { 𝑧 } ∧ { 𝑧 } ⊆ 𝑦 ) ) ) |
| 42 |
41
|
rspcev |
⊢ ( ( { 𝑧 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ∧ ( 𝑧 ∈ { 𝑧 } ∧ { 𝑧 } ⊆ 𝑦 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) |
| 43 |
35 37 38 42
|
syl12anc |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) |
| 44 |
43
|
ralrimivva |
⊢ ( 𝑋 ∈ V → ∀ 𝑦 ∈ 𝒫 𝑋 ∀ 𝑧 ∈ 𝑦 ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) |
| 45 |
|
basgen2 |
⊢ ( ( 𝒫 𝑋 ∈ Top ∧ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ⊆ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ∀ 𝑧 ∈ 𝑦 ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) = 𝒫 𝑋 ) |
| 46 |
17 22 44 45
|
syl3anc |
⊢ ( 𝑋 ∈ V → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) = 𝒫 𝑋 ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝑋 ∈ V ∧ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) = 𝒫 𝑋 ) |
| 48 |
46 17
|
eqeltrd |
⊢ ( 𝑋 ∈ V → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) ∈ Top ) |
| 49 |
|
tgclb |
⊢ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ∈ TopBases ↔ ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) ∈ Top ) |
| 50 |
48 49
|
sylibr |
⊢ ( 𝑋 ∈ V → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ∈ TopBases ) |
| 51 |
|
2ndci |
⊢ ( ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ∈ TopBases ∧ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) ∈ 2ndω ) |
| 52 |
50 51
|
sylan |
⊢ ( ( 𝑋 ∈ V ∧ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) ∈ 2ndω ) |
| 53 |
47 52
|
eqeltrrd |
⊢ ( ( 𝑋 ∈ V ∧ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) → 𝒫 𝑋 ∈ 2ndω ) |
| 54 |
|
is2ndc |
⊢ ( 𝒫 𝑋 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) |
| 55 |
|
vex |
⊢ 𝑏 ∈ V |
| 56 |
|
simpr |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 57 |
56 19
|
sylib |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
| 58 |
|
simplrr |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) |
| 59 |
57 58
|
eleqtrrd |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ ( topGen ‘ 𝑏 ) ) |
| 60 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
| 61 |
|
tg2 |
⊢ ( ( { 𝑥 } ∈ ( topGen ‘ 𝑏 ) ∧ 𝑥 ∈ { 𝑥 } ) → ∃ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) |
| 62 |
59 60 61
|
sylancl |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) |
| 63 |
|
simprrl |
⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → 𝑥 ∈ 𝑦 ) |
| 64 |
63
|
snssd |
⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → { 𝑥 } ⊆ 𝑦 ) |
| 65 |
|
simprrr |
⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → 𝑦 ⊆ { 𝑥 } ) |
| 66 |
64 65
|
eqssd |
⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → { 𝑥 } = 𝑦 ) |
| 67 |
|
simprl |
⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → 𝑦 ∈ 𝑏 ) |
| 68 |
66 67
|
eqeltrd |
⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → { 𝑥 } ∈ 𝑏 ) |
| 69 |
62 68
|
rexlimddv |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ 𝑏 ) |
| 70 |
69
|
fmpttd |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) → ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 ⟶ 𝑏 ) |
| 71 |
70
|
frnd |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ⊆ 𝑏 ) |
| 72 |
|
ssdomg |
⊢ ( 𝑏 ∈ V → ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ⊆ 𝑏 → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ 𝑏 ) ) |
| 73 |
55 71 72
|
mpsyl |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ 𝑏 ) |
| 74 |
|
simprl |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) → 𝑏 ≼ ω ) |
| 75 |
|
domtr |
⊢ ( ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ 𝑏 ∧ 𝑏 ≼ ω ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) |
| 76 |
73 74 75
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) |
| 77 |
76
|
rexlimdva2 |
⊢ ( 𝑋 ∈ V → ( ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) ) |
| 78 |
54 77
|
biimtrid |
⊢ ( 𝑋 ∈ V → ( 𝒫 𝑋 ∈ 2ndω → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) ) |
| 79 |
78
|
imp |
⊢ ( ( 𝑋 ∈ V ∧ 𝒫 𝑋 ∈ 2ndω ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) |
| 80 |
53 79
|
impbida |
⊢ ( 𝑋 ∈ V → ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω ) ) |
| 81 |
16 80
|
bitrd |
⊢ ( 𝑋 ∈ V → ( 𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω ) ) |
| 82 |
1 2 81
|
pm5.21nii |
⊢ ( 𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω ) |