| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eirr.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 2 |  | eirr.2 | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 3 |  | eirr.3 | ⊢ ( 𝜑  →  𝑄  ∈  ℕ ) | 
						
							| 4 |  | eirr.4 | ⊢ ( 𝜑  →  e  =  ( 𝑃  /  𝑄 ) ) | 
						
							| 5 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑄 )  ∈  Fin ) | 
						
							| 6 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑄 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 7 |  | nn0z | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℤ ) | 
						
							| 8 |  | 1exp | ⊢ ( 𝑛  ∈  ℤ  →  ( 1 ↑ 𝑛 )  =  1 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑛  ∈  ℕ0  →  ( 1 ↑ 𝑛 )  =  1 ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 1 ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) )  =  ( 1  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 11 | 10 | mpteq2ia | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 1 ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 12 | 1 11 | eqtr4i | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 1 ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 13 | 12 | eftval | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝐹 ‘ 𝑘 )  =  ( ( 1 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑘 )  =  ( ( 1 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 15 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 17 |  | eftcl | ⊢ ( ( 1  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 18 | 16 17 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 19 | 14 18 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 20 | 6 19 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 21 | 5 20 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 22 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 23 |  | eqid | ⊢ ( ℤ≥ ‘ ( 𝑄  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) | 
						
							| 24 | 3 | peano2nnd | ⊢ ( 𝜑  →  ( 𝑄  +  1 )  ∈  ℕ ) | 
						
							| 25 | 24 | nnnn0d | ⊢ ( 𝜑  →  ( 𝑄  +  1 )  ∈  ℕ0 ) | 
						
							| 26 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ! ‘ 𝑛 )  =  ( ! ‘ 𝑘 ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝑛  =  𝑘  →  ( 1  /  ( ! ‘ 𝑛 ) )  =  ( 1  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 29 |  | ovex | ⊢ ( 1  /  ( ! ‘ 𝑘 ) )  ∈  V | 
						
							| 30 | 28 1 29 | fvmpt | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝐹 ‘ 𝑘 )  =  ( 1  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 1  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 32 |  | faccl | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 34 | 33 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ 𝑘 )  ∈  ℝ+ ) | 
						
							| 35 | 34 | rpreccld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 1  /  ( ! ‘ 𝑘 ) )  ∈  ℝ+ ) | 
						
							| 36 | 31 35 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ+ ) | 
						
							| 37 | 12 | efcllem | ⊢ ( 1  ∈  ℂ  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 38 | 16 37 | syl | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 39 | 22 23 25 26 36 38 | isumrpcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ+ ) | 
						
							| 40 | 39 | rpred | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 41 | 40 | recnd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 42 |  | esum | ⊢ e  =  Σ 𝑘  ∈  ℕ0 ( 1  /  ( ! ‘ 𝑘 ) ) | 
						
							| 43 | 30 | sumeq2i | ⊢ Σ 𝑘  ∈  ℕ0 ( 𝐹 ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ0 ( 1  /  ( ! ‘ 𝑘 ) ) | 
						
							| 44 | 42 43 | eqtr4i | ⊢ e  =  Σ 𝑘  ∈  ℕ0 ( 𝐹 ‘ 𝑘 ) | 
						
							| 45 | 22 23 25 26 19 38 | isumsplit | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ0 ( 𝐹 ‘ 𝑘 )  =  ( Σ 𝑘  ∈  ( 0 ... ( ( 𝑄  +  1 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 46 | 44 45 | eqtrid | ⊢ ( 𝜑  →  e  =  ( Σ 𝑘  ∈  ( 0 ... ( ( 𝑄  +  1 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 47 | 3 | nncnd | ⊢ ( 𝜑  →  𝑄  ∈  ℂ ) | 
						
							| 48 |  | pncan | ⊢ ( ( 𝑄  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑄  +  1 )  −  1 )  =  𝑄 ) | 
						
							| 49 | 47 15 48 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  −  1 )  =  𝑄 ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑄  +  1 )  −  1 ) )  =  ( 0 ... 𝑄 ) ) | 
						
							| 51 | 50 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... ( ( 𝑄  +  1 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 0 ... ( ( 𝑄  +  1 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 53 | 46 52 | eqtrd | ⊢ ( 𝜑  →  e  =  ( Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 54 | 21 41 53 | mvrladdd | ⊢ ( 𝜑  →  ( e  −  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  ( e  −  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 56 | 3 | nnnn0d | ⊢ ( 𝜑  →  𝑄  ∈  ℕ0 ) | 
						
							| 57 | 56 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝑄 )  ∈  ℕ ) | 
						
							| 58 | 57 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 59 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 60 | 59 | recni | ⊢ e  ∈  ℂ | 
						
							| 61 | 60 | a1i | ⊢ ( 𝜑  →  e  ∈  ℂ ) | 
						
							| 62 | 58 61 21 | subdid | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  ( e  −  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( ( ! ‘ 𝑄 )  ·  e )  −  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 63 | 55 62 | eqtr3d | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  =  ( ( ( ! ‘ 𝑄 )  ·  e )  −  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 64 | 4 | oveq2d | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  e )  =  ( ( ! ‘ 𝑄 )  ·  ( 𝑃  /  𝑄 ) ) ) | 
						
							| 65 | 2 | zcnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 66 | 3 | nnne0d | ⊢ ( 𝜑  →  𝑄  ≠  0 ) | 
						
							| 67 | 58 65 47 66 | div12d | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  ( 𝑃  /  𝑄 ) )  =  ( 𝑃  ·  ( ( ! ‘ 𝑄 )  /  𝑄 ) ) ) | 
						
							| 68 | 64 67 | eqtrd | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  e )  =  ( 𝑃  ·  ( ( ! ‘ 𝑄 )  /  𝑄 ) ) ) | 
						
							| 69 | 3 | nnred | ⊢ ( 𝜑  →  𝑄  ∈  ℝ ) | 
						
							| 70 | 69 | leidd | ⊢ ( 𝜑  →  𝑄  ≤  𝑄 ) | 
						
							| 71 |  | facdiv | ⊢ ( ( 𝑄  ∈  ℕ0  ∧  𝑄  ∈  ℕ  ∧  𝑄  ≤  𝑄 )  →  ( ( ! ‘ 𝑄 )  /  𝑄 )  ∈  ℕ ) | 
						
							| 72 | 56 3 70 71 | syl3anc | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  /  𝑄 )  ∈  ℕ ) | 
						
							| 73 | 72 | nnzd | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  /  𝑄 )  ∈  ℤ ) | 
						
							| 74 | 2 73 | zmulcld | ⊢ ( 𝜑  →  ( 𝑃  ·  ( ( ! ‘ 𝑄 )  /  𝑄 ) )  ∈  ℤ ) | 
						
							| 75 | 68 74 | eqeltrd | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  e )  ∈  ℤ ) | 
						
							| 76 | 5 58 20 | fsummulc2 | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( ( ! ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 77 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 78 | 77 30 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( 𝐹 ‘ 𝑘 )  =  ( 1  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( ( ! ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑘 ) )  =  ( ( ! ‘ 𝑄 )  ·  ( 1  /  ( ! ‘ 𝑘 ) ) ) ) | 
						
							| 80 | 58 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( ! ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 81 | 6 33 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 82 | 81 | nncnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 83 |  | facne0 | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ≠  0 ) | 
						
							| 84 | 77 83 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( ! ‘ 𝑘 )  ≠  0 ) | 
						
							| 85 | 80 82 84 | divrecd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( ( ! ‘ 𝑄 )  /  ( ! ‘ 𝑘 ) )  =  ( ( ! ‘ 𝑄 )  ·  ( 1  /  ( ! ‘ 𝑘 ) ) ) ) | 
						
							| 86 | 79 85 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( ( ! ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑘 ) )  =  ( ( ! ‘ 𝑄 )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 87 |  | permnn | ⊢ ( 𝑘  ∈  ( 0 ... 𝑄 )  →  ( ( ! ‘ 𝑄 )  /  ( ! ‘ 𝑘 ) )  ∈  ℕ ) | 
						
							| 88 | 87 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( ( ! ‘ 𝑄 )  /  ( ! ‘ 𝑘 ) )  ∈  ℕ ) | 
						
							| 89 | 86 88 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( ( ! ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑘 ) )  ∈  ℕ ) | 
						
							| 90 | 89 | nnzd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑄 ) )  →  ( ( ! ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 91 | 5 90 | fsumzcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( ( ! ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 92 | 76 91 | eqeltrd | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 93 | 75 92 | zsubcld | ⊢ ( 𝜑  →  ( ( ( ! ‘ 𝑄 )  ·  e )  −  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) )  ∈  ℤ ) | 
						
							| 94 | 63 93 | eqeltrd | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 95 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 96 | 57 | nnrpd | ⊢ ( 𝜑  →  ( ! ‘ 𝑄 )  ∈  ℝ+ ) | 
						
							| 97 | 96 39 | rpmulcld | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ+ ) | 
						
							| 98 | 97 | rpgt0d | ⊢ ( 𝜑  →  0  <  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 99 | 24 | peano2nnd | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  +  1 )  ∈  ℕ ) | 
						
							| 100 | 99 | nnred | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  +  1 )  ∈  ℝ ) | 
						
							| 101 | 25 | faccld | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑄  +  1 ) )  ∈  ℕ ) | 
						
							| 102 | 101 24 | nnmulcld | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) )  ∈  ℕ ) | 
						
							| 103 | 100 102 | nndivred | ⊢ ( 𝜑  →  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) )  ∈  ℝ ) | 
						
							| 104 | 57 | nnrecred | ⊢ ( 𝜑  →  ( 1  /  ( ! ‘ 𝑄 ) )  ∈  ℝ ) | 
						
							| 105 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 106 | 105 | oveq1i | ⊢ ( ( abs ‘ 1 ) ↑ 𝑛 )  =  ( 1 ↑ 𝑛 ) | 
						
							| 107 | 106 | oveq1i | ⊢ ( ( ( abs ‘ 1 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) )  =  ( ( 1 ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) | 
						
							| 108 | 107 | mpteq2i | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ 1 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 1 ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 109 | 12 108 | eqtr4i | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ 1 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 110 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 1 ) ↑ ( 𝑄  +  1 ) )  /  ( ! ‘ ( 𝑄  +  1 ) ) )  ·  ( ( 1  /  ( ( 𝑄  +  1 )  +  1 ) ) ↑ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 1 ) ↑ ( 𝑄  +  1 ) )  /  ( ! ‘ ( 𝑄  +  1 ) ) )  ·  ( ( 1  /  ( ( 𝑄  +  1 )  +  1 ) ) ↑ 𝑛 ) ) ) | 
						
							| 111 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 112 | 105 111 | eqbrtri | ⊢ ( abs ‘ 1 )  ≤  1 | 
						
							| 113 | 112 | a1i | ⊢ ( 𝜑  →  ( abs ‘ 1 )  ≤  1 ) | 
						
							| 114 | 12 109 110 24 16 113 | eftlub | ⊢ ( 𝜑  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  ≤  ( ( ( abs ‘ 1 ) ↑ ( 𝑄  +  1 ) )  ·  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) ) ) ) | 
						
							| 115 | 39 | rprege0d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  0  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 116 |  | absid | ⊢ ( ( Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  0  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 117 | 115 116 | syl | ⊢ ( 𝜑  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 118 | 105 | oveq1i | ⊢ ( ( abs ‘ 1 ) ↑ ( 𝑄  +  1 ) )  =  ( 1 ↑ ( 𝑄  +  1 ) ) | 
						
							| 119 | 24 | nnzd | ⊢ ( 𝜑  →  ( 𝑄  +  1 )  ∈  ℤ ) | 
						
							| 120 |  | 1exp | ⊢ ( ( 𝑄  +  1 )  ∈  ℤ  →  ( 1 ↑ ( 𝑄  +  1 ) )  =  1 ) | 
						
							| 121 | 119 120 | syl | ⊢ ( 𝜑  →  ( 1 ↑ ( 𝑄  +  1 ) )  =  1 ) | 
						
							| 122 | 118 121 | eqtrid | ⊢ ( 𝜑  →  ( ( abs ‘ 1 ) ↑ ( 𝑄  +  1 ) )  =  1 ) | 
						
							| 123 | 122 | oveq1d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 1 ) ↑ ( 𝑄  +  1 ) )  ·  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) ) )  =  ( 1  ·  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) ) ) ) | 
						
							| 124 | 103 | recnd | ⊢ ( 𝜑  →  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) )  ∈  ℂ ) | 
						
							| 125 | 124 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) ) )  =  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) ) ) | 
						
							| 126 | 123 125 | eqtrd | ⊢ ( 𝜑  →  ( ( ( abs ‘ 1 ) ↑ ( 𝑄  +  1 ) )  ·  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) ) )  =  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) ) ) | 
						
							| 127 | 114 117 126 | 3brtr3d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) ) ) | 
						
							| 128 | 24 | nnred | ⊢ ( 𝜑  →  ( 𝑄  +  1 )  ∈  ℝ ) | 
						
							| 129 | 128 128 | readdcld | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  +  ( 𝑄  +  1 ) )  ∈  ℝ ) | 
						
							| 130 | 128 128 | remulcld | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  ·  ( 𝑄  +  1 ) )  ∈  ℝ ) | 
						
							| 131 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 132 | 3 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑄 ) | 
						
							| 133 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 134 |  | nnleltp1 | ⊢ ( ( 1  ∈  ℕ  ∧  𝑄  ∈  ℕ )  →  ( 1  ≤  𝑄  ↔  1  <  ( 𝑄  +  1 ) ) ) | 
						
							| 135 | 133 3 134 | sylancr | ⊢ ( 𝜑  →  ( 1  ≤  𝑄  ↔  1  <  ( 𝑄  +  1 ) ) ) | 
						
							| 136 | 132 135 | mpbid | ⊢ ( 𝜑  →  1  <  ( 𝑄  +  1 ) ) | 
						
							| 137 | 131 128 128 136 | ltadd2dd | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  +  1 )  <  ( ( 𝑄  +  1 )  +  ( 𝑄  +  1 ) ) ) | 
						
							| 138 | 24 | nncnd | ⊢ ( 𝜑  →  ( 𝑄  +  1 )  ∈  ℂ ) | 
						
							| 139 | 138 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  ( 𝑄  +  1 ) )  =  ( ( 𝑄  +  1 )  +  ( 𝑄  +  1 ) ) ) | 
						
							| 140 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 141 | 131 69 131 132 | leadd1dd | ⊢ ( 𝜑  →  ( 1  +  1 )  ≤  ( 𝑄  +  1 ) ) | 
						
							| 142 | 140 141 | eqbrtrid | ⊢ ( 𝜑  →  2  ≤  ( 𝑄  +  1 ) ) | 
						
							| 143 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 144 | 143 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 145 | 24 | nngt0d | ⊢ ( 𝜑  →  0  <  ( 𝑄  +  1 ) ) | 
						
							| 146 |  | lemul1 | ⊢ ( ( 2  ∈  ℝ  ∧  ( 𝑄  +  1 )  ∈  ℝ  ∧  ( ( 𝑄  +  1 )  ∈  ℝ  ∧  0  <  ( 𝑄  +  1 ) ) )  →  ( 2  ≤  ( 𝑄  +  1 )  ↔  ( 2  ·  ( 𝑄  +  1 ) )  ≤  ( ( 𝑄  +  1 )  ·  ( 𝑄  +  1 ) ) ) ) | 
						
							| 147 | 144 128 128 145 146 | syl112anc | ⊢ ( 𝜑  →  ( 2  ≤  ( 𝑄  +  1 )  ↔  ( 2  ·  ( 𝑄  +  1 ) )  ≤  ( ( 𝑄  +  1 )  ·  ( 𝑄  +  1 ) ) ) ) | 
						
							| 148 | 142 147 | mpbid | ⊢ ( 𝜑  →  ( 2  ·  ( 𝑄  +  1 ) )  ≤  ( ( 𝑄  +  1 )  ·  ( 𝑄  +  1 ) ) ) | 
						
							| 149 | 139 148 | eqbrtrrd | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  +  ( 𝑄  +  1 ) )  ≤  ( ( 𝑄  +  1 )  ·  ( 𝑄  +  1 ) ) ) | 
						
							| 150 | 100 129 130 137 149 | ltletrd | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  +  1 )  <  ( ( 𝑄  +  1 )  ·  ( 𝑄  +  1 ) ) ) | 
						
							| 151 |  | facp1 | ⊢ ( 𝑄  ∈  ℕ0  →  ( ! ‘ ( 𝑄  +  1 ) )  =  ( ( ! ‘ 𝑄 )  ·  ( 𝑄  +  1 ) ) ) | 
						
							| 152 | 56 151 | syl | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑄  +  1 ) )  =  ( ( ! ‘ 𝑄 )  ·  ( 𝑄  +  1 ) ) ) | 
						
							| 153 | 152 | oveq1d | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑄  +  1 ) )  /  ( ! ‘ 𝑄 ) )  =  ( ( ( ! ‘ 𝑄 )  ·  ( 𝑄  +  1 ) )  /  ( ! ‘ 𝑄 ) ) ) | 
						
							| 154 | 101 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑄  +  1 ) )  ∈  ℂ ) | 
						
							| 155 | 57 | nnne0d | ⊢ ( 𝜑  →  ( ! ‘ 𝑄 )  ≠  0 ) | 
						
							| 156 | 154 58 155 | divrecd | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑄  +  1 ) )  /  ( ! ‘ 𝑄 ) )  =  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 1  /  ( ! ‘ 𝑄 ) ) ) ) | 
						
							| 157 | 138 58 155 | divcan3d | ⊢ ( 𝜑  →  ( ( ( ! ‘ 𝑄 )  ·  ( 𝑄  +  1 ) )  /  ( ! ‘ 𝑄 ) )  =  ( 𝑄  +  1 ) ) | 
						
							| 158 | 153 156 157 | 3eqtr3rd | ⊢ ( 𝜑  →  ( 𝑄  +  1 )  =  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 1  /  ( ! ‘ 𝑄 ) ) ) ) | 
						
							| 159 | 158 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  ·  ( 𝑄  +  1 ) )  =  ( ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 1  /  ( ! ‘ 𝑄 ) ) )  ·  ( 𝑄  +  1 ) ) ) | 
						
							| 160 | 104 | recnd | ⊢ ( 𝜑  →  ( 1  /  ( ! ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 161 | 154 160 138 | mul32d | ⊢ ( 𝜑  →  ( ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 1  /  ( ! ‘ 𝑄 ) ) )  ·  ( 𝑄  +  1 ) )  =  ( ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) )  ·  ( 1  /  ( ! ‘ 𝑄 ) ) ) ) | 
						
							| 162 | 159 161 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  ·  ( 𝑄  +  1 ) )  =  ( ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) )  ·  ( 1  /  ( ! ‘ 𝑄 ) ) ) ) | 
						
							| 163 | 150 162 | breqtrd | ⊢ ( 𝜑  →  ( ( 𝑄  +  1 )  +  1 )  <  ( ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) )  ·  ( 1  /  ( ! ‘ 𝑄 ) ) ) ) | 
						
							| 164 | 102 | nnred | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) )  ∈  ℝ ) | 
						
							| 165 | 102 | nngt0d | ⊢ ( 𝜑  →  0  <  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) ) | 
						
							| 166 |  | ltdivmul | ⊢ ( ( ( ( 𝑄  +  1 )  +  1 )  ∈  ℝ  ∧  ( 1  /  ( ! ‘ 𝑄 ) )  ∈  ℝ  ∧  ( ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) )  ∈  ℝ  ∧  0  <  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) ) )  →  ( ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) )  <  ( 1  /  ( ! ‘ 𝑄 ) )  ↔  ( ( 𝑄  +  1 )  +  1 )  <  ( ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) )  ·  ( 1  /  ( ! ‘ 𝑄 ) ) ) ) ) | 
						
							| 167 | 100 104 164 165 166 | syl112anc | ⊢ ( 𝜑  →  ( ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) )  <  ( 1  /  ( ! ‘ 𝑄 ) )  ↔  ( ( 𝑄  +  1 )  +  1 )  <  ( ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) )  ·  ( 1  /  ( ! ‘ 𝑄 ) ) ) ) ) | 
						
							| 168 | 163 167 | mpbird | ⊢ ( 𝜑  →  ( ( ( 𝑄  +  1 )  +  1 )  /  ( ( ! ‘ ( 𝑄  +  1 ) )  ·  ( 𝑄  +  1 ) ) )  <  ( 1  /  ( ! ‘ 𝑄 ) ) ) | 
						
							| 169 | 40 103 104 127 168 | lelttrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 )  <  ( 1  /  ( ! ‘ 𝑄 ) ) ) | 
						
							| 170 | 40 131 96 | ltmuldiv2d | ⊢ ( 𝜑  →  ( ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  <  1  ↔  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 )  <  ( 1  /  ( ! ‘ 𝑄 ) ) ) ) | 
						
							| 171 | 169 170 | mpbird | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  <  1 ) | 
						
							| 172 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 173 | 171 172 | breqtrrdi | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  <  ( 0  +  1 ) ) | 
						
							| 174 |  | btwnnz | ⊢ ( ( 0  ∈  ℤ  ∧  0  <  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  ∧  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  <  ( 0  +  1 ) )  →  ¬  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 175 | 95 98 173 174 | syl3anc | ⊢ ( 𝜑  →  ¬  ( ( ! ‘ 𝑄 )  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑄  +  1 ) ) ( 𝐹 ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 176 | 94 175 | pm2.65i | ⊢ ¬  𝜑 |