| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eirr.1 |  |-  F = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) | 
						
							| 2 |  | eirr.2 |  |-  ( ph -> P e. ZZ ) | 
						
							| 3 |  | eirr.3 |  |-  ( ph -> Q e. NN ) | 
						
							| 4 |  | eirr.4 |  |-  ( ph -> _e = ( P / Q ) ) | 
						
							| 5 |  | fzfid |  |-  ( ph -> ( 0 ... Q ) e. Fin ) | 
						
							| 6 |  | elfznn0 |  |-  ( k e. ( 0 ... Q ) -> k e. NN0 ) | 
						
							| 7 |  | nn0z |  |-  ( n e. NN0 -> n e. ZZ ) | 
						
							| 8 |  | 1exp |  |-  ( n e. ZZ -> ( 1 ^ n ) = 1 ) | 
						
							| 9 | 7 8 | syl |  |-  ( n e. NN0 -> ( 1 ^ n ) = 1 ) | 
						
							| 10 | 9 | oveq1d |  |-  ( n e. NN0 -> ( ( 1 ^ n ) / ( ! ` n ) ) = ( 1 / ( ! ` n ) ) ) | 
						
							| 11 | 10 | mpteq2ia |  |-  ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) | 
						
							| 12 | 1 11 | eqtr4i |  |-  F = ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) | 
						
							| 13 | 12 | eftval |  |-  ( k e. NN0 -> ( F ` k ) = ( ( 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( ( 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 15 |  | ax-1cn |  |-  1 e. CC | 
						
							| 16 | 15 | a1i |  |-  ( ph -> 1 e. CC ) | 
						
							| 17 |  | eftcl |  |-  ( ( 1 e. CC /\ k e. NN0 ) -> ( ( 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 18 | 16 17 | sylan |  |-  ( ( ph /\ k e. NN0 ) -> ( ( 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 19 | 14 18 | eqeltrd |  |-  ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) | 
						
							| 20 | 6 19 | sylan2 |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( F ` k ) e. CC ) | 
						
							| 21 | 5 20 | fsumcl |  |-  ( ph -> sum_ k e. ( 0 ... Q ) ( F ` k ) e. CC ) | 
						
							| 22 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 23 |  | eqid |  |-  ( ZZ>= ` ( Q + 1 ) ) = ( ZZ>= ` ( Q + 1 ) ) | 
						
							| 24 | 3 | peano2nnd |  |-  ( ph -> ( Q + 1 ) e. NN ) | 
						
							| 25 | 24 | nnnn0d |  |-  ( ph -> ( Q + 1 ) e. NN0 ) | 
						
							| 26 |  | eqidd |  |-  ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( F ` k ) ) | 
						
							| 27 |  | fveq2 |  |-  ( n = k -> ( ! ` n ) = ( ! ` k ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( n = k -> ( 1 / ( ! ` n ) ) = ( 1 / ( ! ` k ) ) ) | 
						
							| 29 |  | ovex |  |-  ( 1 / ( ! ` k ) ) e. _V | 
						
							| 30 | 28 1 29 | fvmpt |  |-  ( k e. NN0 -> ( F ` k ) = ( 1 / ( ! ` k ) ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( 1 / ( ! ` k ) ) ) | 
						
							| 32 |  | faccl |  |-  ( k e. NN0 -> ( ! ` k ) e. NN ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. NN ) | 
						
							| 34 | 33 | nnrpd |  |-  ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. RR+ ) | 
						
							| 35 | 34 | rpreccld |  |-  ( ( ph /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) e. RR+ ) | 
						
							| 36 | 31 35 | eqeltrd |  |-  ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. RR+ ) | 
						
							| 37 | 12 | efcllem |  |-  ( 1 e. CC -> seq 0 ( + , F ) e. dom ~~> ) | 
						
							| 38 | 16 37 | syl |  |-  ( ph -> seq 0 ( + , F ) e. dom ~~> ) | 
						
							| 39 | 22 23 25 26 36 38 | isumrpcl |  |-  ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR+ ) | 
						
							| 40 | 39 | rpred |  |-  ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR ) | 
						
							| 41 | 40 | recnd |  |-  ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. CC ) | 
						
							| 42 |  | esum |  |-  _e = sum_ k e. NN0 ( 1 / ( ! ` k ) ) | 
						
							| 43 | 30 | sumeq2i |  |-  sum_ k e. NN0 ( F ` k ) = sum_ k e. NN0 ( 1 / ( ! ` k ) ) | 
						
							| 44 | 42 43 | eqtr4i |  |-  _e = sum_ k e. NN0 ( F ` k ) | 
						
							| 45 | 22 23 25 26 19 38 | isumsplit |  |-  ( ph -> sum_ k e. NN0 ( F ` k ) = ( sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) | 
						
							| 46 | 44 45 | eqtrid |  |-  ( ph -> _e = ( sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) | 
						
							| 47 | 3 | nncnd |  |-  ( ph -> Q e. CC ) | 
						
							| 48 |  | pncan |  |-  ( ( Q e. CC /\ 1 e. CC ) -> ( ( Q + 1 ) - 1 ) = Q ) | 
						
							| 49 | 47 15 48 | sylancl |  |-  ( ph -> ( ( Q + 1 ) - 1 ) = Q ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ph -> ( 0 ... ( ( Q + 1 ) - 1 ) ) = ( 0 ... Q ) ) | 
						
							| 51 | 50 | sumeq1d |  |-  ( ph -> sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) = sum_ k e. ( 0 ... Q ) ( F ` k ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( ph -> ( sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = ( sum_ k e. ( 0 ... Q ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) | 
						
							| 53 | 46 52 | eqtrd |  |-  ( ph -> _e = ( sum_ k e. ( 0 ... Q ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) | 
						
							| 54 | 21 41 53 | mvrladdd |  |-  ( ph -> ( _e - sum_ k e. ( 0 ... Q ) ( F ` k ) ) = sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) | 
						
							| 55 | 54 | oveq2d |  |-  ( ph -> ( ( ! ` Q ) x. ( _e - sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) = ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) | 
						
							| 56 | 3 | nnnn0d |  |-  ( ph -> Q e. NN0 ) | 
						
							| 57 | 56 | faccld |  |-  ( ph -> ( ! ` Q ) e. NN ) | 
						
							| 58 | 57 | nncnd |  |-  ( ph -> ( ! ` Q ) e. CC ) | 
						
							| 59 |  | ere |  |-  _e e. RR | 
						
							| 60 | 59 | recni |  |-  _e e. CC | 
						
							| 61 | 60 | a1i |  |-  ( ph -> _e e. CC ) | 
						
							| 62 | 58 61 21 | subdid |  |-  ( ph -> ( ( ! ` Q ) x. ( _e - sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) = ( ( ( ! ` Q ) x. _e ) - ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) ) | 
						
							| 63 | 55 62 | eqtr3d |  |-  ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = ( ( ( ! ` Q ) x. _e ) - ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) ) | 
						
							| 64 | 4 | oveq2d |  |-  ( ph -> ( ( ! ` Q ) x. _e ) = ( ( ! ` Q ) x. ( P / Q ) ) ) | 
						
							| 65 | 2 | zcnd |  |-  ( ph -> P e. CC ) | 
						
							| 66 | 3 | nnne0d |  |-  ( ph -> Q =/= 0 ) | 
						
							| 67 | 58 65 47 66 | div12d |  |-  ( ph -> ( ( ! ` Q ) x. ( P / Q ) ) = ( P x. ( ( ! ` Q ) / Q ) ) ) | 
						
							| 68 | 64 67 | eqtrd |  |-  ( ph -> ( ( ! ` Q ) x. _e ) = ( P x. ( ( ! ` Q ) / Q ) ) ) | 
						
							| 69 | 3 | nnred |  |-  ( ph -> Q e. RR ) | 
						
							| 70 | 69 | leidd |  |-  ( ph -> Q <_ Q ) | 
						
							| 71 |  | facdiv |  |-  ( ( Q e. NN0 /\ Q e. NN /\ Q <_ Q ) -> ( ( ! ` Q ) / Q ) e. NN ) | 
						
							| 72 | 56 3 70 71 | syl3anc |  |-  ( ph -> ( ( ! ` Q ) / Q ) e. NN ) | 
						
							| 73 | 72 | nnzd |  |-  ( ph -> ( ( ! ` Q ) / Q ) e. ZZ ) | 
						
							| 74 | 2 73 | zmulcld |  |-  ( ph -> ( P x. ( ( ! ` Q ) / Q ) ) e. ZZ ) | 
						
							| 75 | 68 74 | eqeltrd |  |-  ( ph -> ( ( ! ` Q ) x. _e ) e. ZZ ) | 
						
							| 76 | 5 58 20 | fsummulc2 |  |-  ( ph -> ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) = sum_ k e. ( 0 ... Q ) ( ( ! ` Q ) x. ( F ` k ) ) ) | 
						
							| 77 | 6 | adantl |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> k e. NN0 ) | 
						
							| 78 | 77 30 | syl |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( F ` k ) = ( 1 / ( ! ` k ) ) ) | 
						
							| 79 | 78 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) = ( ( ! ` Q ) x. ( 1 / ( ! ` k ) ) ) ) | 
						
							| 80 | 58 | adantr |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` Q ) e. CC ) | 
						
							| 81 | 6 33 | sylan2 |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` k ) e. NN ) | 
						
							| 82 | 81 | nncnd |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` k ) e. CC ) | 
						
							| 83 |  | facne0 |  |-  ( k e. NN0 -> ( ! ` k ) =/= 0 ) | 
						
							| 84 | 77 83 | syl |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` k ) =/= 0 ) | 
						
							| 85 | 80 82 84 | divrecd |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) / ( ! ` k ) ) = ( ( ! ` Q ) x. ( 1 / ( ! ` k ) ) ) ) | 
						
							| 86 | 79 85 | eqtr4d |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) = ( ( ! ` Q ) / ( ! ` k ) ) ) | 
						
							| 87 |  | permnn |  |-  ( k e. ( 0 ... Q ) -> ( ( ! ` Q ) / ( ! ` k ) ) e. NN ) | 
						
							| 88 | 87 | adantl |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) / ( ! ` k ) ) e. NN ) | 
						
							| 89 | 86 88 | eqeltrd |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) e. NN ) | 
						
							| 90 | 89 | nnzd |  |-  ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) e. ZZ ) | 
						
							| 91 | 5 90 | fsumzcl |  |-  ( ph -> sum_ k e. ( 0 ... Q ) ( ( ! ` Q ) x. ( F ` k ) ) e. ZZ ) | 
						
							| 92 | 76 91 | eqeltrd |  |-  ( ph -> ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) e. ZZ ) | 
						
							| 93 | 75 92 | zsubcld |  |-  ( ph -> ( ( ( ! ` Q ) x. _e ) - ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) e. ZZ ) | 
						
							| 94 | 63 93 | eqeltrd |  |-  ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. ZZ ) | 
						
							| 95 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 96 | 57 | nnrpd |  |-  ( ph -> ( ! ` Q ) e. RR+ ) | 
						
							| 97 | 96 39 | rpmulcld |  |-  ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. RR+ ) | 
						
							| 98 | 97 | rpgt0d |  |-  ( ph -> 0 < ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) | 
						
							| 99 | 24 | peano2nnd |  |-  ( ph -> ( ( Q + 1 ) + 1 ) e. NN ) | 
						
							| 100 | 99 | nnred |  |-  ( ph -> ( ( Q + 1 ) + 1 ) e. RR ) | 
						
							| 101 | 25 | faccld |  |-  ( ph -> ( ! ` ( Q + 1 ) ) e. NN ) | 
						
							| 102 | 101 24 | nnmulcld |  |-  ( ph -> ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) e. NN ) | 
						
							| 103 | 100 102 | nndivred |  |-  ( ph -> ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) e. RR ) | 
						
							| 104 | 57 | nnrecred |  |-  ( ph -> ( 1 / ( ! ` Q ) ) e. RR ) | 
						
							| 105 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 106 | 105 | oveq1i |  |-  ( ( abs ` 1 ) ^ n ) = ( 1 ^ n ) | 
						
							| 107 | 106 | oveq1i |  |-  ( ( ( abs ` 1 ) ^ n ) / ( ! ` n ) ) = ( ( 1 ^ n ) / ( ! ` n ) ) | 
						
							| 108 | 107 | mpteq2i |  |-  ( n e. NN0 |-> ( ( ( abs ` 1 ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) | 
						
							| 109 | 12 108 | eqtr4i |  |-  F = ( n e. NN0 |-> ( ( ( abs ` 1 ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 110 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) / ( ! ` ( Q + 1 ) ) ) x. ( ( 1 / ( ( Q + 1 ) + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) / ( ! ` ( Q + 1 ) ) ) x. ( ( 1 / ( ( Q + 1 ) + 1 ) ) ^ n ) ) ) | 
						
							| 111 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 112 | 105 111 | eqbrtri |  |-  ( abs ` 1 ) <_ 1 | 
						
							| 113 | 112 | a1i |  |-  ( ph -> ( abs ` 1 ) <_ 1 ) | 
						
							| 114 | 12 109 110 24 16 113 | eftlub |  |-  ( ph -> ( abs ` sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) <_ ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) ) | 
						
							| 115 | 39 | rprege0d |  |-  ( ph -> ( sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR /\ 0 <_ sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) | 
						
							| 116 |  | absid |  |-  ( ( sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR /\ 0 <_ sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) | 
						
							| 117 | 115 116 | syl |  |-  ( ph -> ( abs ` sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) | 
						
							| 118 | 105 | oveq1i |  |-  ( ( abs ` 1 ) ^ ( Q + 1 ) ) = ( 1 ^ ( Q + 1 ) ) | 
						
							| 119 | 24 | nnzd |  |-  ( ph -> ( Q + 1 ) e. ZZ ) | 
						
							| 120 |  | 1exp |  |-  ( ( Q + 1 ) e. ZZ -> ( 1 ^ ( Q + 1 ) ) = 1 ) | 
						
							| 121 | 119 120 | syl |  |-  ( ph -> ( 1 ^ ( Q + 1 ) ) = 1 ) | 
						
							| 122 | 118 121 | eqtrid |  |-  ( ph -> ( ( abs ` 1 ) ^ ( Q + 1 ) ) = 1 ) | 
						
							| 123 | 122 | oveq1d |  |-  ( ph -> ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) = ( 1 x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) ) | 
						
							| 124 | 103 | recnd |  |-  ( ph -> ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) e. CC ) | 
						
							| 125 | 124 | mullidd |  |-  ( ph -> ( 1 x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) = ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) | 
						
							| 126 | 123 125 | eqtrd |  |-  ( ph -> ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) = ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) | 
						
							| 127 | 114 117 126 | 3brtr3d |  |-  ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) <_ ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) | 
						
							| 128 | 24 | nnred |  |-  ( ph -> ( Q + 1 ) e. RR ) | 
						
							| 129 | 128 128 | readdcld |  |-  ( ph -> ( ( Q + 1 ) + ( Q + 1 ) ) e. RR ) | 
						
							| 130 | 128 128 | remulcld |  |-  ( ph -> ( ( Q + 1 ) x. ( Q + 1 ) ) e. RR ) | 
						
							| 131 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 132 | 3 | nnge1d |  |-  ( ph -> 1 <_ Q ) | 
						
							| 133 |  | 1nn |  |-  1 e. NN | 
						
							| 134 |  | nnleltp1 |  |-  ( ( 1 e. NN /\ Q e. NN ) -> ( 1 <_ Q <-> 1 < ( Q + 1 ) ) ) | 
						
							| 135 | 133 3 134 | sylancr |  |-  ( ph -> ( 1 <_ Q <-> 1 < ( Q + 1 ) ) ) | 
						
							| 136 | 132 135 | mpbid |  |-  ( ph -> 1 < ( Q + 1 ) ) | 
						
							| 137 | 131 128 128 136 | ltadd2dd |  |-  ( ph -> ( ( Q + 1 ) + 1 ) < ( ( Q + 1 ) + ( Q + 1 ) ) ) | 
						
							| 138 | 24 | nncnd |  |-  ( ph -> ( Q + 1 ) e. CC ) | 
						
							| 139 | 138 | 2timesd |  |-  ( ph -> ( 2 x. ( Q + 1 ) ) = ( ( Q + 1 ) + ( Q + 1 ) ) ) | 
						
							| 140 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 141 | 131 69 131 132 | leadd1dd |  |-  ( ph -> ( 1 + 1 ) <_ ( Q + 1 ) ) | 
						
							| 142 | 140 141 | eqbrtrid |  |-  ( ph -> 2 <_ ( Q + 1 ) ) | 
						
							| 143 |  | 2re |  |-  2 e. RR | 
						
							| 144 | 143 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 145 | 24 | nngt0d |  |-  ( ph -> 0 < ( Q + 1 ) ) | 
						
							| 146 |  | lemul1 |  |-  ( ( 2 e. RR /\ ( Q + 1 ) e. RR /\ ( ( Q + 1 ) e. RR /\ 0 < ( Q + 1 ) ) ) -> ( 2 <_ ( Q + 1 ) <-> ( 2 x. ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) ) | 
						
							| 147 | 144 128 128 145 146 | syl112anc |  |-  ( ph -> ( 2 <_ ( Q + 1 ) <-> ( 2 x. ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) ) | 
						
							| 148 | 142 147 | mpbid |  |-  ( ph -> ( 2 x. ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) | 
						
							| 149 | 139 148 | eqbrtrrd |  |-  ( ph -> ( ( Q + 1 ) + ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) | 
						
							| 150 | 100 129 130 137 149 | ltletrd |  |-  ( ph -> ( ( Q + 1 ) + 1 ) < ( ( Q + 1 ) x. ( Q + 1 ) ) ) | 
						
							| 151 |  | facp1 |  |-  ( Q e. NN0 -> ( ! ` ( Q + 1 ) ) = ( ( ! ` Q ) x. ( Q + 1 ) ) ) | 
						
							| 152 | 56 151 | syl |  |-  ( ph -> ( ! ` ( Q + 1 ) ) = ( ( ! ` Q ) x. ( Q + 1 ) ) ) | 
						
							| 153 | 152 | oveq1d |  |-  ( ph -> ( ( ! ` ( Q + 1 ) ) / ( ! ` Q ) ) = ( ( ( ! ` Q ) x. ( Q + 1 ) ) / ( ! ` Q ) ) ) | 
						
							| 154 | 101 | nncnd |  |-  ( ph -> ( ! ` ( Q + 1 ) ) e. CC ) | 
						
							| 155 | 57 | nnne0d |  |-  ( ph -> ( ! ` Q ) =/= 0 ) | 
						
							| 156 | 154 58 155 | divrecd |  |-  ( ph -> ( ( ! ` ( Q + 1 ) ) / ( ! ` Q ) ) = ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) | 
						
							| 157 | 138 58 155 | divcan3d |  |-  ( ph -> ( ( ( ! ` Q ) x. ( Q + 1 ) ) / ( ! ` Q ) ) = ( Q + 1 ) ) | 
						
							| 158 | 153 156 157 | 3eqtr3rd |  |-  ( ph -> ( Q + 1 ) = ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) | 
						
							| 159 | 158 | oveq1d |  |-  ( ph -> ( ( Q + 1 ) x. ( Q + 1 ) ) = ( ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) x. ( Q + 1 ) ) ) | 
						
							| 160 | 104 | recnd |  |-  ( ph -> ( 1 / ( ! ` Q ) ) e. CC ) | 
						
							| 161 | 154 160 138 | mul32d |  |-  ( ph -> ( ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) x. ( Q + 1 ) ) = ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) | 
						
							| 162 | 159 161 | eqtrd |  |-  ( ph -> ( ( Q + 1 ) x. ( Q + 1 ) ) = ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) | 
						
							| 163 | 150 162 | breqtrd |  |-  ( ph -> ( ( Q + 1 ) + 1 ) < ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) | 
						
							| 164 | 102 | nnred |  |-  ( ph -> ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) e. RR ) | 
						
							| 165 | 102 | nngt0d |  |-  ( ph -> 0 < ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) | 
						
							| 166 |  | ltdivmul |  |-  ( ( ( ( Q + 1 ) + 1 ) e. RR /\ ( 1 / ( ! ` Q ) ) e. RR /\ ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) e. RR /\ 0 < ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) -> ( ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) < ( 1 / ( ! ` Q ) ) <-> ( ( Q + 1 ) + 1 ) < ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) ) | 
						
							| 167 | 100 104 164 165 166 | syl112anc |  |-  ( ph -> ( ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) < ( 1 / ( ! ` Q ) ) <-> ( ( Q + 1 ) + 1 ) < ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) ) | 
						
							| 168 | 163 167 | mpbird |  |-  ( ph -> ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) < ( 1 / ( ! ` Q ) ) ) | 
						
							| 169 | 40 103 104 127 168 | lelttrd |  |-  ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) < ( 1 / ( ! ` Q ) ) ) | 
						
							| 170 | 40 131 96 | ltmuldiv2d |  |-  ( ph -> ( ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < 1 <-> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) < ( 1 / ( ! ` Q ) ) ) ) | 
						
							| 171 | 169 170 | mpbird |  |-  ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < 1 ) | 
						
							| 172 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 173 | 171 172 | breqtrrdi |  |-  ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < ( 0 + 1 ) ) | 
						
							| 174 |  | btwnnz |  |-  ( ( 0 e. ZZ /\ 0 < ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) /\ ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < ( 0 + 1 ) ) -> -. ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. ZZ ) | 
						
							| 175 | 95 98 173 174 | syl3anc |  |-  ( ph -> -. ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. ZZ ) | 
						
							| 176 | 94 175 | pm2.65i |  |-  -. ph |