Step |
Hyp |
Ref |
Expression |
1 |
|
isercoll.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isercoll.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
isercoll.g |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑍 ) |
4 |
|
isercoll.i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
5 |
|
isercoll.0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
6 |
|
isercoll.f |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
7 |
|
isercoll.h |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
8 |
|
addid2 |
⊢ ( 𝑛 ∈ ℂ → ( 0 + 𝑛 ) = 𝑛 ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ℂ ) → ( 0 + 𝑛 ) = 𝑛 ) |
10 |
|
addid1 |
⊢ ( 𝑛 ∈ ℂ → ( 𝑛 + 0 ) = 𝑛 ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ℂ ) → ( 𝑛 + 0 ) = 𝑛 ) |
12 |
|
addcl |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑛 + 𝑘 ) ∈ ℂ ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ ) ) → ( 𝑛 + 𝑘 ) ∈ ℂ ) |
14 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 0 ∈ ℂ ) |
15 |
|
cnvimass |
⊢ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ dom 𝐺 |
16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 𝐺 : ℕ ⟶ 𝑍 ) |
17 |
15 16
|
fssdm |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℕ ) |
18 |
1 2 3 4
|
isercolllem1 |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℕ ) → ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) |
19 |
17 18
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) |
20 |
1 2 3 4
|
isercolllem2 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
21 |
|
isoeq4 |
⊢ ( ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ↔ ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ↔ ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) |
23 |
19 22
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) |
24 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ dom 𝐺 ) |
25 |
|
sseqin2 |
⊢ ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ dom 𝐺 ↔ ( dom 𝐺 ∩ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
26 |
24 25
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( dom 𝐺 ∩ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
27 |
|
1nn |
⊢ 1 ∈ ℕ |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 1 ∈ ℕ ) |
29 |
|
ffvelrn |
⊢ ( ( 𝐺 : ℕ ⟶ 𝑍 ∧ 1 ∈ ℕ ) → ( 𝐺 ‘ 1 ) ∈ 𝑍 ) |
30 |
3 27 29
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝑍 ) |
31 |
30 1
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) |
34 |
|
elfzuzb |
⊢ ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ) |
35 |
32 33 34
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
36 |
|
ffn |
⊢ ( 𝐺 : ℕ ⟶ 𝑍 → 𝐺 Fn ℕ ) |
37 |
|
elpreima |
⊢ ( 𝐺 Fn ℕ → ( 1 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( 1 ∈ ℕ ∧ ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
38 |
16 36 37
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 1 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( 1 ∈ ℕ ∧ ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
39 |
28 35 38
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 1 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
40 |
39
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ≠ ∅ ) |
41 |
26 40
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( dom 𝐺 ∩ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ≠ ∅ ) |
42 |
|
imadisj |
⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ↔ ( dom 𝐺 ∩ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) |
43 |
42
|
necon3bii |
⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ≠ ∅ ↔ ( dom 𝐺 ∩ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ≠ ∅ ) |
44 |
41 43
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ≠ ∅ ) |
45 |
|
ffun |
⊢ ( 𝐺 : ℕ ⟶ 𝑍 → Fun 𝐺 ) |
46 |
|
funimacnv |
⊢ ( Fun 𝐺 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ) |
47 |
16 45 46
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ) |
48 |
|
inss1 |
⊢ ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ⊆ ( 𝑀 ... 𝑁 ) |
49 |
47 48
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
50 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 𝜑 ) |
51 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
52 |
51 1
|
eleqtrrdi |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ 𝑍 ) |
53 |
50 52 6
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
54 |
47
|
difeq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( 𝑀 ... 𝑁 ) ∖ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) = ( ( 𝑀 ... 𝑁 ) ∖ ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ) ) |
55 |
|
difin |
⊢ ( ( 𝑀 ... 𝑁 ) ∖ ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ) = ( ( 𝑀 ... 𝑁 ) ∖ ran 𝐺 ) |
56 |
54 55
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( 𝑀 ... 𝑁 ) ∖ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) = ( ( 𝑀 ... 𝑁 ) ∖ ran 𝐺 ) ) |
57 |
52
|
ssriv |
⊢ ( 𝑀 ... 𝑁 ) ⊆ 𝑍 |
58 |
|
ssdif |
⊢ ( ( 𝑀 ... 𝑁 ) ⊆ 𝑍 → ( ( 𝑀 ... 𝑁 ) ∖ ran 𝐺 ) ⊆ ( 𝑍 ∖ ran 𝐺 ) ) |
59 |
57 58
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( 𝑀 ... 𝑁 ) ∖ ran 𝐺 ) ⊆ ( 𝑍 ∖ ran 𝐺 ) ) |
60 |
56 59
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( 𝑀 ... 𝑁 ) ∖ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ⊆ ( 𝑍 ∖ ran 𝐺 ) ) |
61 |
60
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ( ( 𝑀 ... 𝑁 ) ∖ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) → 𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) |
62 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
63 |
61 62
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ( ( 𝑀 ... 𝑁 ) ∖ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
64 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) → 𝑘 ∈ ℕ ) |
65 |
50 64 7
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
66 |
20
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ↔ 𝑘 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) |
67 |
66
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) → 𝑘 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
68 |
67
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) → ( ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
69 |
68
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) → ( 𝐹 ‘ ( ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
70 |
65 69
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑘 ) ) ) |
71 |
9 11 13 14 23 44 49 53 63 70
|
seqcoll2 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) |