| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isercoll.z |
|
| 2 |
|
isercoll.m |
|
| 3 |
|
isercoll.g |
|
| 4 |
|
isercoll.i |
|
| 5 |
|
isercoll.0 |
|
| 6 |
|
isercoll.f |
|
| 7 |
|
isercoll.h |
|
| 8 |
|
addlid |
|
| 9 |
8
|
adantl |
|
| 10 |
|
addrid |
|
| 11 |
10
|
adantl |
|
| 12 |
|
addcl |
|
| 13 |
12
|
adantl |
|
| 14 |
|
0cnd |
|
| 15 |
|
cnvimass |
|
| 16 |
3
|
adantr |
|
| 17 |
15 16
|
fssdm |
|
| 18 |
1 2 3 4
|
isercolllem1 |
|
| 19 |
17 18
|
syldan |
|
| 20 |
1 2 3 4
|
isercolllem2 |
|
| 21 |
|
isoeq4 |
|
| 22 |
20 21
|
syl |
|
| 23 |
19 22
|
mpbird |
|
| 24 |
15
|
a1i |
|
| 25 |
|
sseqin2 |
|
| 26 |
24 25
|
sylib |
|
| 27 |
|
1nn |
|
| 28 |
27
|
a1i |
|
| 29 |
|
ffvelcdm |
|
| 30 |
3 27 29
|
sylancl |
|
| 31 |
30 1
|
eleqtrdi |
|
| 32 |
31
|
adantr |
|
| 33 |
|
simpr |
|
| 34 |
|
elfzuzb |
|
| 35 |
32 33 34
|
sylanbrc |
|
| 36 |
|
ffn |
|
| 37 |
|
elpreima |
|
| 38 |
16 36 37
|
3syl |
|
| 39 |
28 35 38
|
mpbir2and |
|
| 40 |
39
|
ne0d |
|
| 41 |
26 40
|
eqnetrd |
|
| 42 |
|
imadisj |
|
| 43 |
42
|
necon3bii |
|
| 44 |
41 43
|
sylibr |
|
| 45 |
|
ffun |
|
| 46 |
|
funimacnv |
|
| 47 |
16 45 46
|
3syl |
|
| 48 |
|
inss1 |
|
| 49 |
47 48
|
eqsstrdi |
|
| 50 |
|
simpl |
|
| 51 |
|
elfzuz |
|
| 52 |
51 1
|
eleqtrrdi |
|
| 53 |
50 52 6
|
syl2an |
|
| 54 |
47
|
difeq2d |
|
| 55 |
|
difin |
|
| 56 |
54 55
|
eqtrdi |
|
| 57 |
52
|
ssriv |
|
| 58 |
|
ssdif |
|
| 59 |
57 58
|
mp1i |
|
| 60 |
56 59
|
eqsstrd |
|
| 61 |
60
|
sselda |
|
| 62 |
5
|
adantlr |
|
| 63 |
61 62
|
syldan |
|
| 64 |
|
elfznn |
|
| 65 |
50 64 7
|
syl2an |
|
| 66 |
20
|
eleq2d |
|
| 67 |
66
|
biimpa |
|
| 68 |
67
|
fvresd |
|
| 69 |
68
|
fveq2d |
|
| 70 |
65 69
|
eqtr4d |
|
| 71 |
9 11 13 14 23 44 49 53 63 70
|
seqcoll2 |
|