Metamath Proof Explorer


Theorem isercolllem2

Description: Lemma for isercoll . (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses isercoll.z Z=M
isercoll.m φM
isercoll.g φG:Z
isercoll.i φkGk<Gk+1
Assertion isercolllem2 φNG11GG-1MN=G-1MN

Proof

Step Hyp Ref Expression
1 isercoll.z Z=M
2 isercoll.m φM
3 isercoll.g φG:Z
4 isercoll.i φkGk<Gk+1
5 elfznn x1supG-1MN<x
6 5 a1i φNG1x1supG-1MN<x
7 cnvimass G-1MNdomG
8 3 adantr φNG1G:Z
9 7 8 fssdm φNG1G-1MN
10 9 sseld φNG1xG-1MNx
11 id xx
12 nnuz =1
13 11 12 eleqtrdi xx1
14 ltso <Or
15 14 a1i φNG1<Or
16 fzfid φNG1MNFin
17 ffun G:ZFunG
18 funimacnv FunGGG-1MN=MNranG
19 8 17 18 3syl φNG1GG-1MN=MNranG
20 inss1 MNranGMN
21 19 20 eqsstrdi φNG1GG-1MNMN
22 16 21 ssfid φNG1GG-1MNFin
23 ssid
24 1 2 3 4 isercolllem1 φGIsom<,<G
25 23 24 mpan2 φGIsom<,<G
26 ffn G:ZGFn
27 fnresdm GFnG=G
28 isoeq1 G=GGIsom<,<GGIsom<,<G
29 3 26 27 28 4syl φGIsom<,<GGIsom<,<G
30 25 29 mpbid φGIsom<,<G
31 isof1o GIsom<,<GG:1-1 ontoG
32 f1ocnv G:1-1 ontoGG-1:G1-1 onto
33 f1ofun G-1:G1-1 ontoFunG-1
34 30 31 32 33 4syl φFunG-1
35 df-f1 G:1-1ZG:ZFunG-1
36 3 34 35 sylanbrc φG:1-1Z
37 36 adantr φNG1G:1-1Z
38 nnex V
39 ssexg G-1MNVG-1MNV
40 9 38 39 sylancl φNG1G-1MNV
41 f1imaeng G:1-1ZG-1MNG-1MNVGG-1MNG-1MN
42 37 9 40 41 syl3anc φNG1GG-1MNG-1MN
43 42 ensymd φNG1G-1MNGG-1MN
44 enfii GG-1MNFinG-1MNGG-1MNG-1MNFin
45 22 43 44 syl2anc φNG1G-1MNFin
46 1nn 1
47 46 a1i φNG11
48 ffvelcdm G:Z1G1Z
49 3 46 48 sylancl φG1Z
50 49 1 eleqtrdi φG1M
51 50 adantr φNG1G1M
52 simpr φNG1NG1
53 elfzuzb G1MNG1MNG1
54 51 52 53 sylanbrc φNG1G1MN
55 8 ffnd φNG1GFn
56 elpreima GFn1G-1MN1G1MN
57 55 56 syl φNG11G-1MN1G1MN
58 47 54 57 mpbir2and φNG11G-1MN
59 58 ne0d φNG1G-1MN
60 nnssre
61 9 60 sstrdi φNG1G-1MN
62 fisupcl <OrG-1MNFinG-1MNG-1MNsupG-1MN<G-1MN
63 15 45 59 61 62 syl13anc φNG1supG-1MN<G-1MN
64 9 63 sseldd φNG1supG-1MN<
65 64 nnzd φNG1supG-1MN<
66 elfz5 x1supG-1MN<x1supG-1MN<xsupG-1MN<
67 13 65 66 syl2anr φNG1xx1supG-1MN<xsupG-1MN<
68 elpreima GFnsupG-1MN<G-1MNsupG-1MN<GsupG-1MN<MN
69 55 68 syl φNG1supG-1MN<G-1MNsupG-1MN<GsupG-1MN<MN
70 63 69 mpbid φNG1supG-1MN<GsupG-1MN<MN
71 elfzle2 GsupG-1MN<MNGsupG-1MN<N
72 70 71 simpl2im φNG1GsupG-1MN<N
73 72 adantr φNG1xGsupG-1MN<N
74 uzssz M
75 1 74 eqsstri Z
76 zssre
77 75 76 sstri Z
78 8 ffvelcdmda φNG1xGxZ
79 77 78 sselid φNG1xGx
80 8 64 ffvelcdmd φNG1GsupG-1MN<Z
81 80 adantr φNG1xGsupG-1MN<Z
82 77 81 sselid φNG1xGsupG-1MN<
83 eluzelz NG1N
84 83 ad2antlr φNG1xN
85 76 84 sselid φNG1xN
86 letr GxGsupG-1MN<NGxGsupG-1MN<GsupG-1MN<NGxN
87 79 82 85 86 syl3anc φNG1xGxGsupG-1MN<GsupG-1MN<NGxN
88 73 87 mpan2d φNG1xGxGsupG-1MN<GxN
89 30 ad2antrr φNG1xGIsom<,<G
90 60 a1i φNG1x
91 ressxr *
92 90 91 sstrdi φNG1x*
93 imassrn GranG
94 3 ad2antrr φNG1xG:Z
95 94 frnd φNG1xranGZ
96 93 95 sstrid φNG1xGZ
97 96 77 sstrdi φNG1xG
98 97 91 sstrdi φNG1xG*
99 simpr φNG1xx
100 64 adantr φNG1xsupG-1MN<
101 leisorel GIsom<,<G*G*xsupG-1MN<xsupG-1MN<GxGsupG-1MN<
102 89 92 98 99 100 101 syl122anc φNG1xxsupG-1MN<GxGsupG-1MN<
103 78 1 eleqtrdi φNG1xGxM
104 elfz5 GxMNGxMNGxN
105 103 84 104 syl2anc φNG1xGxMNGxN
106 88 102 105 3imtr4d φNG1xxsupG-1MN<GxMN
107 elpreima GFnxG-1MNxGxMN
108 107 baibd GFnxxG-1MNGxMN
109 55 108 sylan φNG1xxG-1MNGxMN
110 106 109 sylibrd φNG1xxsupG-1MN<xG-1MN
111 fimaxre2 G-1MNG-1MNFinxyG-1MNyx
112 61 45 111 syl2anc φNG1xyG-1MNyx
113 suprub G-1MNG-1MNxyG-1MNyxxG-1MNxsupG-1MN<
114 113 ex G-1MNG-1MNxyG-1MNyxxG-1MNxsupG-1MN<
115 61 59 112 114 syl3anc φNG1xG-1MNxsupG-1MN<
116 115 adantr φNG1xxG-1MNxsupG-1MN<
117 110 116 impbid φNG1xxsupG-1MN<xG-1MN
118 67 117 bitrd φNG1xx1supG-1MN<xG-1MN
119 118 ex φNG1xx1supG-1MN<xG-1MN
120 6 10 119 pm5.21ndd φNG1x1supG-1MN<xG-1MN
121 120 eqrdv φNG11supG-1MN<=G-1MN
122 121 fveq2d φNG11supG-1MN<=G-1MN
123 64 nnnn0d φNG1supG-1MN<0
124 hashfz1 supG-1MN<01supG-1MN<=supG-1MN<
125 123 124 syl φNG11supG-1MN<=supG-1MN<
126 hashen G-1MNFinGG-1MNFinG-1MN=GG-1MNG-1MNGG-1MN
127 45 22 126 syl2anc φNG1G-1MN=GG-1MNG-1MNGG-1MN
128 43 127 mpbird φNG1G-1MN=GG-1MN
129 122 125 128 3eqtr3d φNG1supG-1MN<=GG-1MN
130 129 oveq2d φNG11supG-1MN<=1GG-1MN
131 130 121 eqtr3d φNG11GG-1MN=G-1MN