| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgiccshift.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
itgiccshift.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
itgiccshift.aleb |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
itgiccshift.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 5 |
|
itgiccshift.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 6 |
|
itgiccshift.g |
⊢ 𝐺 = ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
| 7 |
5
|
rpred |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 8 |
1 2 7 3
|
leadd1dd |
⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) |
| 9 |
8
|
ditgpos |
⊢ ( 𝜑 → ⨜ [ ( 𝐴 + 𝑇 ) → ( 𝐵 + 𝑇 ) ] ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 10 |
1 7
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 11 |
2 7
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 12 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ∈ ℝ ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐵 ∈ ℝ ) |
| 17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 18 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
| 20 |
|
eliccre |
⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 21 |
17 18 19 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 22 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑇 ∈ ℝ ) |
| 23 |
21 22
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
| 24 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 25 |
7
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 26 |
24 25
|
pncand |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) − 𝑇 ) = 𝐴 ) |
| 27 |
26
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
| 29 |
|
elicc2 |
⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ) → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) ) |
| 30 |
17 18 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) ) |
| 31 |
19 30
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) |
| 32 |
31
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ≤ 𝑥 ) |
| 33 |
17 21 22 32
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐴 + 𝑇 ) − 𝑇 ) ≤ ( 𝑥 − 𝑇 ) ) |
| 34 |
28 33
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ≤ ( 𝑥 − 𝑇 ) ) |
| 35 |
31
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ≤ ( 𝐵 + 𝑇 ) ) |
| 36 |
21 18 22 35
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ≤ ( ( 𝐵 + 𝑇 ) − 𝑇 ) ) |
| 37 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 38 |
37 25
|
pncand |
⊢ ( 𝜑 → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
| 40 |
36 39
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ≤ 𝐵 ) |
| 41 |
15 16 23 34 40
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 42 |
14 41
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ∈ ℂ ) |
| 43 |
42 6
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⟶ ℂ ) |
| 44 |
43
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 45 |
10 11 44
|
itgioo |
⊢ ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 46 |
9 45
|
eqtr2d |
⊢ ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ⨜ [ ( 𝐴 + 𝑇 ) → ( 𝐵 + 𝑇 ) ] ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 47 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) |
| 48 |
47
|
addccncf |
⊢ ( 𝑇 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 49 |
25 48
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 50 |
1 2
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 51 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 52 |
50 51
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 53 |
10 11
|
iccssred |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⊆ ℝ ) |
| 54 |
53 51
|
sstrdi |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⊆ ℂ ) |
| 55 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 56 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 57 |
50
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 58 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑇 ∈ ℝ ) |
| 59 |
57 58
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 + 𝑇 ) ∈ ℝ ) |
| 60 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 61 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 62 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 63 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 64 |
60 62 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 65 |
61 64
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
| 66 |
65
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑦 ) |
| 67 |
60 57 58 66
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ≤ ( 𝑦 + 𝑇 ) ) |
| 68 |
65
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ≤ 𝐵 ) |
| 69 |
57 62 58 68
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) |
| 70 |
55 56 59 67 69
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
| 71 |
47 49 52 54 70
|
cncfmptssg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) ) |
| 72 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) |
| 73 |
72
|
cbvmptv |
⊢ ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) |
| 74 |
1 2 7
|
iccshift |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ) |
| 75 |
74
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) ) |
| 76 |
73 75
|
eqtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) ) |
| 77 |
6 76
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) ) |
| 78 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 79 |
78
|
rexbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 80 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
| 81 |
80
|
eqeq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
| 82 |
81
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) ) |
| 83 |
79 82
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
| 84 |
83
|
cbvrabv |
⊢ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } |
| 85 |
84
|
eqcomi |
⊢ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } |
| 86 |
|
eqid |
⊢ ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) |
| 87 |
52 25 85 4 86
|
cncfshift |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) ∈ ( { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } –cn→ ℂ ) ) |
| 88 |
77 87
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } –cn→ ℂ ) ) |
| 89 |
43
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 90 |
74
|
eqcomd |
⊢ ( 𝜑 → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } = ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
| 91 |
90
|
oveq1d |
⊢ ( 𝜑 → ( { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } –cn→ ℂ ) = ( ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) –cn→ ℂ ) ) |
| 92 |
88 89 91
|
3eltr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) –cn→ ℂ ) ) |
| 93 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 94 |
93
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 95 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 96 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 97 |
96
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 98 |
94 95 97
|
constcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 99 |
|
fconstmpt |
⊢ ( ( 𝐴 (,) 𝐵 ) × { 1 } ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) |
| 100 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
| 101 |
100
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 102 |
|
ioovolcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 103 |
1 2 102
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 104 |
|
iblconst |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ∧ 1 ∈ ℂ ) → ( ( 𝐴 (,) 𝐵 ) × { 1 } ) ∈ 𝐿1 ) |
| 105 |
101 103 95 104
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) × { 1 } ) ∈ 𝐿1 ) |
| 106 |
99 105
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ 𝐿1 ) |
| 107 |
98 106
|
elind |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ ( ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ∩ 𝐿1 ) ) |
| 108 |
50
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) |
| 109 |
108
|
eqcomd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) |
| 110 |
109
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) = ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 111 |
51
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 112 |
111
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 113 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
| 114 |
112 113
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 + 𝑇 ) ∈ ℂ ) |
| 115 |
114
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) : ℝ ⟶ ℂ ) |
| 116 |
|
ssid |
⊢ ℝ ⊆ ℝ |
| 117 |
116
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
| 118 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 119 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 120 |
118 119
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 121 |
111 115 117 50 120
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 122 |
110 121
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 123 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 124 |
1 2 123
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 125 |
124
|
reseq2d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 126 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 127 |
126
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 128 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
| 129 |
127
|
dvmptid |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 130 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 0 ∈ ℂ ) |
| 131 |
127 25
|
dvmptc |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑇 ) ) = ( 𝑦 ∈ ℝ ↦ 0 ) ) |
| 132 |
127 112 128 129 113 130 131
|
dvmptadd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 1 + 0 ) ) ) |
| 133 |
132
|
reseq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( 1 + 0 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 134 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 135 |
134
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 136 |
135
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 1 + 0 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 + 0 ) ) ) |
| 137 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 138 |
137
|
mpteq2i |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 + 0 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) |
| 139 |
138
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 + 0 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 140 |
133 136 139
|
3eqtrd |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 141 |
122 125 140
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 142 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 𝑇 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) ) |
| 143 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 + 𝑇 ) = ( 𝐴 + 𝑇 ) ) |
| 144 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 + 𝑇 ) = ( 𝐵 + 𝑇 ) ) |
| 145 |
1 2 3 71 92 107 141 142 143 144 10 11
|
itgsubsticc |
⊢ ( 𝜑 → ⨜ [ ( 𝐴 + 𝑇 ) → ( 𝐵 + 𝑇 ) ] ( 𝐺 ‘ 𝑥 ) d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 ) |
| 146 |
3
|
ditgpos |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 ) |
| 147 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 : ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⟶ ℂ ) |
| 148 |
147 70
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) ∈ ℂ ) |
| 149 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 1 ∈ ℂ ) |
| 150 |
148 149
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) ∈ ℂ ) |
| 151 |
1 2 150
|
itgioo |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 ) |
| 152 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 153 |
152
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) = ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) ) |
| 154 |
153
|
cbvitgv |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) d 𝑥 |
| 155 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 : ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⟶ ℂ ) |
| 156 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 157 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 158 |
50
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 159 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑇 ∈ ℝ ) |
| 160 |
158 159
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
| 161 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 162 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 163 |
162
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 164 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 166 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 167 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 168 |
163 165 166 167
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 169 |
161 158 159 168
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ≤ ( 𝑥 + 𝑇 ) ) |
| 170 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 171 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 172 |
163 165 166 171
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 173 |
158 170 159 172
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) |
| 174 |
156 157 160 169 173
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
| 175 |
155 174
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ∈ ℂ ) |
| 176 |
175
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 177 |
6 73
|
eqtri |
⊢ 𝐺 = ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) |
| 178 |
177
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 = ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) ) |
| 179 |
|
fvoveq1 |
⊢ ( 𝑤 = ( 𝑥 + 𝑇 ) → ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑇 ) − 𝑇 ) ) ) |
| 180 |
158
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 181 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑇 ∈ ℂ ) |
| 182 |
180 181
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 + 𝑇 ) − 𝑇 ) = 𝑥 ) |
| 183 |
182
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑇 ) − 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 184 |
179 183
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 = ( 𝑥 + 𝑇 ) ) → ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 185 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 186 |
178 184 174 185
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 187 |
176 186
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 188 |
187
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 189 |
154 188
|
eqtrid |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 190 |
146 151 189
|
3eqtrd |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 191 |
46 145 190
|
3eqtrd |
⊢ ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |