Metamath Proof Explorer


Theorem itgiccshift

Description: The integral of a function, F stays the same if its closed interval domain is shifted by T . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgiccshift.a φA
itgiccshift.b φB
itgiccshift.aleb φAB
itgiccshift.f φF:ABcn
itgiccshift.t φT+
itgiccshift.g G=xA+TB+TFxT
Assertion itgiccshift φA+TB+TGxdx=ABFxdx

Proof

Step Hyp Ref Expression
1 itgiccshift.a φA
2 itgiccshift.b φB
3 itgiccshift.aleb φAB
4 itgiccshift.f φF:ABcn
5 itgiccshift.t φT+
6 itgiccshift.g G=xA+TB+TFxT
7 5 rpred φT
8 1 2 7 3 leadd1dd φA+TB+T
9 8 ditgpos φA+TB+TGxdx=A+TB+TGxdx
10 1 7 readdcld φA+T
11 2 7 readdcld φB+T
12 cncff F:ABcnF:AB
13 4 12 syl φF:AB
14 13 adantr φxA+TB+TF:AB
15 1 adantr φxA+TB+TA
16 2 adantr φxA+TB+TB
17 10 adantr φxA+TB+TA+T
18 11 adantr φxA+TB+TB+T
19 simpr φxA+TB+TxA+TB+T
20 eliccre A+TB+TxA+TB+Tx
21 17 18 19 20 syl3anc φxA+TB+Tx
22 7 adantr φxA+TB+TT
23 21 22 resubcld φxA+TB+TxT
24 1 recnd φA
25 7 recnd φT
26 24 25 pncand φA+T-T=A
27 26 eqcomd φA=A+T-T
28 27 adantr φxA+TB+TA=A+T-T
29 elicc2 A+TB+TxA+TB+TxA+TxxB+T
30 17 18 29 syl2anc φxA+TB+TxA+TB+TxA+TxxB+T
31 19 30 mpbid φxA+TB+TxA+TxxB+T
32 31 simp2d φxA+TB+TA+Tx
33 17 21 22 32 lesub1dd φxA+TB+TA+T-TxT
34 28 33 eqbrtrd φxA+TB+TAxT
35 31 simp3d φxA+TB+TxB+T
36 21 18 22 35 lesub1dd φxA+TB+TxTB+T-T
37 2 recnd φB
38 37 25 pncand φB+T-T=B
39 38 adantr φxA+TB+TB+T-T=B
40 36 39 breqtrd φxA+TB+TxTB
41 15 16 23 34 40 eliccd φxA+TB+TxTAB
42 14 41 ffvelcdmd φxA+TB+TFxT
43 42 6 fmptd φG:A+TB+T
44 43 ffvelcdmda φxA+TB+TGx
45 10 11 44 itgioo φA+TB+TGxdx=A+TB+TGxdx
46 9 45 eqtr2d φA+TB+TGxdx=A+TB+TGxdx
47 eqid yy+T=yy+T
48 47 addccncf Tyy+T:cn
49 25 48 syl φyy+T:cn
50 1 2 iccssred φAB
51 ax-resscn
52 50 51 sstrdi φAB
53 10 11 iccssred φA+TB+T
54 53 51 sstrdi φA+TB+T
55 10 adantr φyABA+T
56 11 adantr φyABB+T
57 50 sselda φyABy
58 7 adantr φyABT
59 57 58 readdcld φyABy+T
60 1 adantr φyABA
61 simpr φyAByAB
62 2 adantr φyABB
63 elicc2 AByAByAyyB
64 60 62 63 syl2anc φyAByAByAyyB
65 61 64 mpbid φyAByAyyB
66 65 simp2d φyABAy
67 60 57 58 66 leadd1dd φyABA+Ty+T
68 65 simp3d φyAByB
69 57 62 58 68 leadd1dd φyABy+TB+T
70 55 56 59 67 69 eliccd φyABy+TA+TB+T
71 47 49 52 54 70 cncfmptssg φyABy+T:ABcnA+TB+T
72 fvoveq1 x=wFxT=FwT
73 72 cbvmptv xA+TB+TFxT=wA+TB+TFwT
74 1 2 7 iccshift φA+TB+T=x|yABx=y+T
75 74 mpteq1d φwA+TB+TFwT=wx|yABx=y+TFwT
76 73 75 eqtrid φxA+TB+TFxT=wx|yABx=y+TFwT
77 6 76 eqtrid φG=wx|yABx=y+TFwT
78 eqeq1 w=xw=z+Tx=z+T
79 78 rexbidv w=xzABw=z+TzABx=z+T
80 oveq1 z=yz+T=y+T
81 80 eqeq2d z=yx=z+Tx=y+T
82 81 cbvrexvw zABx=z+TyABx=y+T
83 79 82 bitrdi w=xzABw=z+TyABx=y+T
84 83 cbvrabv w|zABw=z+T=x|yABx=y+T
85 84 eqcomi x|yABx=y+T=w|zABw=z+T
86 eqid wx|yABx=y+TFwT=wx|yABx=y+TFwT
87 52 25 85 4 86 cncfshift φwx|yABx=y+TFwT:x|yABx=y+Tcn
88 77 87 eqeltrd φG:x|yABx=y+Tcn
89 43 feqmptd φG=xA+TB+TGx
90 74 eqcomd φx|yABx=y+T=A+TB+T
91 90 oveq1d φx|yABx=y+Tcn=A+TB+Tcn
92 88 89 91 3eltr3d φxA+TB+TGx:A+TB+Tcn
93 ioosscn AB
94 93 a1i φAB
95 1cnd φ1
96 ssid
97 96 a1i φ
98 94 95 97 constcncfg φyAB1:ABcn
99 fconstmpt AB×1=yAB1
100 ioombl ABdomvol
101 100 a1i φABdomvol
102 ioovolcl ABvolAB
103 1 2 102 syl2anc φvolAB
104 iblconst ABdomvolvolAB1AB×1𝐿1
105 101 103 95 104 syl3anc φAB×1𝐿1
106 99 105 eqeltrrid φyAB1𝐿1
107 98 106 elind φyAB1ABcn𝐿1
108 50 resmptd φyy+TAB=yABy+T
109 108 eqcomd φyABy+T=yy+TAB
110 109 oveq2d φdyABy+Tdy=Dyy+TAB
111 51 a1i φ
112 111 sselda φyy
113 25 adantr φyT
114 112 113 addcld φyy+T
115 114 fmpttd φyy+T:
116 ssid
117 116 a1i φ
118 eqid TopOpenfld=TopOpenfld
119 118 tgioo2 topGenran.=TopOpenfld𝑡
120 118 119 dvres yy+T:ABDyy+TAB=dyy+TdyinttopGenran.AB
121 111 115 117 50 120 syl22anc φDyy+TAB=dyy+TdyinttopGenran.AB
122 110 121 eqtrd φdyABy+Tdy=dyy+TdyinttopGenran.AB
123 iccntr ABinttopGenran.AB=AB
124 1 2 123 syl2anc φinttopGenran.AB=AB
125 124 reseq2d φdyy+TdyinttopGenran.AB=dyy+TdyAB
126 reelprrecn
127 126 a1i φ
128 1cnd φy1
129 127 dvmptid φdyydy=y1
130 0cnd φy0
131 127 25 dvmptc φdyTdy=y0
132 127 112 128 129 113 130 131 dvmptadd φdyy+Tdy=y1+0
133 132 reseq1d φdyy+TdyAB=y1+0AB
134 ioossre AB
135 134 a1i φAB
136 135 resmptd φy1+0AB=yAB1+0
137 1p0e1 1+0=1
138 137 mpteq2i yAB1+0=yAB1
139 138 a1i φyAB1+0=yAB1
140 133 136 139 3eqtrd φdyy+TdyAB=yAB1
141 122 125 140 3eqtrd φdyABy+Tdy=yAB1
142 fveq2 x=y+TGx=Gy+T
143 oveq1 y=Ay+T=A+T
144 oveq1 y=By+T=B+T
145 1 2 3 71 92 107 141 142 143 144 10 11 itgsubsticc φA+TB+TGxdx=ABGy+T1dy
146 3 ditgpos φABGy+T1dy=ABGy+T1dy
147 43 adantr φyABG:A+TB+T
148 147 70 ffvelcdmd φyABGy+T
149 1cnd φyAB1
150 148 149 mulcld φyABGy+T1
151 1 2 150 itgioo φABGy+T1dy=ABGy+T1dy
152 fvoveq1 y=xGy+T=Gx+T
153 152 oveq1d y=xGy+T1=Gx+T1
154 153 cbvitgv ABGy+T1dy=ABGx+T1dx
155 43 adantr φxABG:A+TB+T
156 10 adantr φxABA+T
157 11 adantr φxABB+T
158 50 sselda φxABx
159 7 adantr φxABT
160 158 159 readdcld φxABx+T
161 1 adantr φxABA
162 1 rexrd φA*
163 162 adantr φxABA*
164 2 rexrd φB*
165 164 adantr φxABB*
166 simpr φxABxAB
167 iccgelb A*B*xABAx
168 163 165 166 167 syl3anc φxABAx
169 161 158 159 168 leadd1dd φxABA+Tx+T
170 2 adantr φxABB
171 iccleub A*B*xABxB
172 163 165 166 171 syl3anc φxABxB
173 158 170 159 172 leadd1dd φxABx+TB+T
174 156 157 160 169 173 eliccd φxABx+TA+TB+T
175 155 174 ffvelcdmd φxABGx+T
176 175 mulridd φxABGx+T1=Gx+T
177 6 73 eqtri G=wA+TB+TFwT
178 177 a1i φxABG=wA+TB+TFwT
179 fvoveq1 w=x+TFwT=Fx+T-T
180 158 recnd φxABx
181 25 adantr φxABT
182 180 181 pncand φxABx+T-T=x
183 182 fveq2d φxABFx+T-T=Fx
184 179 183 sylan9eqr φxABw=x+TFwT=Fx
185 13 ffvelcdmda φxABFx
186 178 184 174 185 fvmptd φxABGx+T=Fx
187 176 186 eqtrd φxABGx+T1=Fx
188 187 itgeq2dv φABGx+T1dx=ABFxdx
189 154 188 eqtrid φABGy+T1dy=ABFxdx
190 146 151 189 3eqtrd φABGy+T1dy=ABFxdx
191 46 145 190 3eqtrd φA+TB+TGxdx=ABFxdx