Metamath Proof Explorer


Theorem totbndbnd

Description: A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd to only require that M be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +oo ) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion totbndbnd ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑀 ∈ ( Bnd ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 totbndmet ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) )
2 1rp 1 ∈ ℝ+
3 istotbnd3 ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) )
4 3 simprbi ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑑 ∈ ℝ+𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 )
5 oveq2 ( 𝑑 = 1 → ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝑀 ) 1 ) )
6 5 iuneq2d ( 𝑑 = 1 → 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) )
7 6 eqeq1d ( 𝑑 = 1 → ( 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) )
8 7 rexbidv ( 𝑑 = 1 → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) )
9 8 rspcv ( 1 ∈ ℝ+ → ( ∀ 𝑑 ∈ ℝ+𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) )
10 2 4 9 mpsyl ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 )
11 simplll ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) )
12 elfpw ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( 𝑣𝑋𝑣 ∈ Fin ) )
13 12 simplbi ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑣𝑋 )
14 13 ad2antrl ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑣𝑋 )
15 14 sselda ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → 𝑧𝑋 )
16 simpllr ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → 𝑦𝑋 )
17 metcl ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧𝑋𝑦𝑋 ) → ( 𝑧 𝑀 𝑦 ) ∈ ℝ )
18 11 15 16 17 syl3anc ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ( 𝑧 𝑀 𝑦 ) ∈ ℝ )
19 metge0 ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧𝑋𝑦𝑋 ) → 0 ≤ ( 𝑧 𝑀 𝑦 ) )
20 11 15 16 19 syl3anc ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → 0 ≤ ( 𝑧 𝑀 𝑦 ) )
21 18 20 ge0p1rpd ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ℝ+ )
22 21 fmpttd ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) : 𝑣 ⟶ ℝ+ )
23 22 frnd ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ+ )
24 12 simprbi ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑣 ∈ Fin )
25 mptfi ( 𝑣 ∈ Fin → ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin )
26 rnfi ( ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin → ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin )
27 24 25 26 3syl ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin )
28 27 ad2antrl ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin )
29 simplr ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑦𝑋 )
30 simprr ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 )
31 29 30 eleqtrrd ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑦 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) )
32 ne0i ( 𝑦 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) → 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ≠ ∅ )
33 dm0rn0 ( dom ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ ↔ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ )
34 ovex ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ V
35 eqid ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) )
36 34 35 dmmpti dom ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = 𝑣
37 36 eqeq1i ( dom ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ ↔ 𝑣 = ∅ )
38 iuneq1 ( 𝑣 = ∅ → 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 1 ) )
39 37 38 sylbi ( dom ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ → 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 1 ) )
40 0iun 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∅
41 39 40 eqtrdi ( dom ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ → 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∅ )
42 33 41 sylbir ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ → 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∅ )
43 42 necon3i ( 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ≠ ∅ → ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ )
44 31 32 43 3syl ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ )
45 rpssre + ⊆ ℝ
46 23 45 sstrdi ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ )
47 ltso < Or ℝ
48 fisupcl ( ( < Or ℝ ∧ ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ∧ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ∧ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ) ) → sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) )
49 47 48 mpan ( ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ∧ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ∧ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ) → sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) )
50 28 44 46 49 syl3anc ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) )
51 23 50 sseldd ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ+ )
52 metxmet ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) )
53 52 ad2antrr ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) )
54 53 adantr ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) )
55 1red ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → 1 ∈ ℝ )
56 46 50 sseldd ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ )
57 56 adantr ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ )
58 46 adantr ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ )
59 44 adantr ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ )
60 28 adantr ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin )
61 fimaxre2 ( ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ∧ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) → ∃ 𝑑 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) 𝑤𝑑 )
62 58 60 61 syl2anc ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) 𝑤𝑑 )
63 35 elrnmpt1 ( ( 𝑧𝑣 ∧ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ V ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) )
64 34 63 mpan2 ( 𝑧𝑣 → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) )
65 64 adantl ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) )
66 suprub ( ( ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ∧ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ∧ ∃ 𝑑 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) 𝑤𝑑 ) ∧ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) )
67 58 59 62 65 66 syl31anc ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) )
68 leaddsub ( ( ( 𝑧 𝑀 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ ) → ( ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ↔ ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) )
69 18 55 57 68 syl3anc ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ( ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ↔ ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) )
70 67 69 mpbid ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) )
71 blss2 ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧𝑋𝑦𝑋 ) ∧ ( 1 ∈ ℝ ∧ sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ ∧ ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) ) → ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) )
72 54 15 16 55 57 70 71 syl33anc ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧𝑣 ) → ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) )
73 72 ralrimiva ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∀ 𝑧𝑣 ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) )
74 nfcv 𝑧 ( 𝑥 ( ball ‘ 𝑀 ) 1 )
75 nfcv 𝑧 𝑦
76 nfcv 𝑧 ( ball ‘ 𝑀 )
77 nfmpt1 𝑧 ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) )
78 77 nfrn 𝑧 ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) )
79 nfcv 𝑧
80 nfcv 𝑧 <
81 78 79 80 nfsup 𝑧 sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < )
82 75 76 81 nfov 𝑧 ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) )
83 74 82 nfss 𝑧 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) )
84 nfv 𝑥 ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) )
85 oveq1 ( 𝑥 = 𝑧 → ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ( 𝑧 ( ball ‘ 𝑀 ) 1 ) )
86 85 sseq1d ( 𝑥 = 𝑧 → ( ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ↔ ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) )
87 83 84 86 cbvralw ( ∀ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ↔ ∀ 𝑧𝑣 ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) )
88 73 87 sylibr ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∀ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) )
89 iunss ( 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ↔ ∀ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) )
90 88 89 sylibr ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) )
91 30 90 eqsstrrd ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑋 ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) )
92 51 rpxrd ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ* )
93 blssm ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦𝑋 ∧ sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ⊆ 𝑋 )
94 53 29 92 93 syl3anc ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ⊆ 𝑋 )
95 91 94 eqssd ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) )
96 oveq2 ( 𝑑 = sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) → ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) = ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) )
97 96 rspceeqv ( ( sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ+𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) → ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) )
98 51 95 97 syl2anc ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) )
99 98 rexlimdvaa ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 → ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) )
100 99 ralrimdva ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 → ∀ 𝑦𝑋𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) )
101 isbnd ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑦𝑋𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) )
102 101 baib ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ∀ 𝑦𝑋𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) )
103 100 102 sylibrd ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑥𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋𝑀 ∈ ( Bnd ‘ 𝑋 ) ) )
104 1 10 103 sylc ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑀 ∈ ( Bnd ‘ 𝑋 ) )