Step |
Hyp |
Ref |
Expression |
1 |
|
amgmlemALT.0 |
|- M = ( mulGrp ` CCfld ) |
2 |
|
amgmlemALT.1 |
|- ( ph -> A e. Fin ) |
3 |
|
amgmlemALT.2 |
|- ( ph -> A =/= (/) ) |
4 |
|
amgmlemALT.3 |
|- ( ph -> F : A --> RR+ ) |
5 |
|
hashnncl |
|- ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
6 |
2 5
|
syl |
|- ( ph -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
7 |
3 6
|
mpbird |
|- ( ph -> ( # ` A ) e. NN ) |
8 |
7
|
nnrpd |
|- ( ph -> ( # ` A ) e. RR+ ) |
9 |
8
|
rpreccld |
|- ( ph -> ( 1 / ( # ` A ) ) e. RR+ ) |
10 |
|
fconst6g |
|- ( ( 1 / ( # ` A ) ) e. RR+ -> ( A X. { ( 1 / ( # ` A ) ) } ) : A --> RR+ ) |
11 |
9 10
|
syl |
|- ( ph -> ( A X. { ( 1 / ( # ` A ) ) } ) : A --> RR+ ) |
12 |
|
fconstmpt |
|- ( A X. { ( 1 / ( # ` A ) ) } ) = ( k e. A |-> ( 1 / ( # ` A ) ) ) |
13 |
12
|
a1i |
|- ( ph -> ( A X. { ( 1 / ( # ` A ) ) } ) = ( k e. A |-> ( 1 / ( # ` A ) ) ) ) |
14 |
13
|
oveq2d |
|- ( ph -> ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) = ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) ) |
15 |
7
|
nnrecred |
|- ( ph -> ( 1 / ( # ` A ) ) e. RR ) |
16 |
15
|
recnd |
|- ( ph -> ( 1 / ( # ` A ) ) e. CC ) |
17 |
|
simpl |
|- ( ( A e. Fin /\ ( 1 / ( # ` A ) ) e. CC ) -> A e. Fin ) |
18 |
|
simplr |
|- ( ( ( A e. Fin /\ ( 1 / ( # ` A ) ) e. CC ) /\ k e. A ) -> ( 1 / ( # ` A ) ) e. CC ) |
19 |
17 18
|
gsumfsum |
|- ( ( A e. Fin /\ ( 1 / ( # ` A ) ) e. CC ) -> ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) = sum_ k e. A ( 1 / ( # ` A ) ) ) |
20 |
2 16 19
|
syl2anc |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) = sum_ k e. A ( 1 / ( # ` A ) ) ) |
21 |
|
fsumconst |
|- ( ( A e. Fin /\ ( 1 / ( # ` A ) ) e. CC ) -> sum_ k e. A ( 1 / ( # ` A ) ) = ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) ) |
22 |
2 16 21
|
syl2anc |
|- ( ph -> sum_ k e. A ( 1 / ( # ` A ) ) = ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) ) |
23 |
7
|
nncnd |
|- ( ph -> ( # ` A ) e. CC ) |
24 |
7
|
nnne0d |
|- ( ph -> ( # ` A ) =/= 0 ) |
25 |
23 24
|
recidd |
|- ( ph -> ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) = 1 ) |
26 |
22 25
|
eqtrd |
|- ( ph -> sum_ k e. A ( 1 / ( # ` A ) ) = 1 ) |
27 |
14 20 26
|
3eqtrd |
|- ( ph -> ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) = 1 ) |
28 |
1 2 3 4 11 27
|
amgmwlem |
|- ( ph -> ( M gsum ( F oF ^c ( A X. { ( 1 / ( # ` A ) ) } ) ) ) <_ ( CCfld gsum ( F oF x. ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) |
29 |
|
rpssre |
|- RR+ C_ RR |
30 |
|
ax-resscn |
|- RR C_ CC |
31 |
29 30
|
sstri |
|- RR+ C_ CC |
32 |
|
eqid |
|- ( M |`s RR+ ) = ( M |`s RR+ ) |
33 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
34 |
1 33
|
mgpbas |
|- CC = ( Base ` M ) |
35 |
32 34
|
ressbas2 |
|- ( RR+ C_ CC -> RR+ = ( Base ` ( M |`s RR+ ) ) ) |
36 |
31 35
|
ax-mp |
|- RR+ = ( Base ` ( M |`s RR+ ) ) |
37 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
38 |
1 37
|
ringidval |
|- 1 = ( 0g ` M ) |
39 |
1
|
oveq1i |
|- ( M |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
40 |
39
|
rpmsubg |
|- RR+ e. ( SubGrp ` ( M |`s ( CC \ { 0 } ) ) ) |
41 |
|
subgsubm |
|- ( RR+ e. ( SubGrp ` ( M |`s ( CC \ { 0 } ) ) ) -> RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) ) |
42 |
40 41
|
ax-mp |
|- RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) |
43 |
|
cnring |
|- CCfld e. Ring |
44 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
45 |
|
cndrng |
|- CCfld e. DivRing |
46 |
33 44 45
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
47 |
46 1
|
unitsubm |
|- ( CCfld e. Ring -> ( CC \ { 0 } ) e. ( SubMnd ` M ) ) |
48 |
43 47
|
ax-mp |
|- ( CC \ { 0 } ) e. ( SubMnd ` M ) |
49 |
|
eqid |
|- ( M |`s ( CC \ { 0 } ) ) = ( M |`s ( CC \ { 0 } ) ) |
50 |
49
|
subsubm |
|- ( ( CC \ { 0 } ) e. ( SubMnd ` M ) -> ( RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) <-> ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) ) ) |
51 |
48 50
|
ax-mp |
|- ( RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) <-> ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) ) |
52 |
42 51
|
mpbi |
|- ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) |
53 |
52
|
simpli |
|- RR+ e. ( SubMnd ` M ) |
54 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
55 |
32 54
|
subm0 |
|- ( RR+ e. ( SubMnd ` M ) -> ( 0g ` M ) = ( 0g ` ( M |`s RR+ ) ) ) |
56 |
53 55
|
ax-mp |
|- ( 0g ` M ) = ( 0g ` ( M |`s RR+ ) ) |
57 |
38 56
|
eqtri |
|- 1 = ( 0g ` ( M |`s RR+ ) ) |
58 |
|
cncrng |
|- CCfld e. CRing |
59 |
1
|
crngmgp |
|- ( CCfld e. CRing -> M e. CMnd ) |
60 |
58 59
|
ax-mp |
|- M e. CMnd |
61 |
32
|
submmnd |
|- ( RR+ e. ( SubMnd ` M ) -> ( M |`s RR+ ) e. Mnd ) |
62 |
53 61
|
mp1i |
|- ( ph -> ( M |`s RR+ ) e. Mnd ) |
63 |
32
|
subcmn |
|- ( ( M e. CMnd /\ ( M |`s RR+ ) e. Mnd ) -> ( M |`s RR+ ) e. CMnd ) |
64 |
60 62 63
|
sylancr |
|- ( ph -> ( M |`s RR+ ) e. CMnd ) |
65 |
|
reex |
|- RR e. _V |
66 |
65 29
|
ssexi |
|- RR+ e. _V |
67 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
68 |
1 67
|
mgpplusg |
|- x. = ( +g ` M ) |
69 |
32 68
|
ressplusg |
|- ( RR+ e. _V -> x. = ( +g ` ( M |`s RR+ ) ) ) |
70 |
66 69
|
ax-mp |
|- x. = ( +g ` ( M |`s RR+ ) ) |
71 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
72 |
71
|
rpmsubg |
|- RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
73 |
1
|
oveq1i |
|- ( M |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) |
74 |
|
cnex |
|- CC e. _V |
75 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
76 |
74 75
|
ssexi |
|- ( CC \ { 0 } ) e. _V |
77 |
|
rpcndif0 |
|- ( w e. RR+ -> w e. ( CC \ { 0 } ) ) |
78 |
77
|
ssriv |
|- RR+ C_ ( CC \ { 0 } ) |
79 |
|
ressabs |
|- ( ( ( CC \ { 0 } ) e. _V /\ RR+ C_ ( CC \ { 0 } ) ) -> ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) ) |
80 |
76 78 79
|
mp2an |
|- ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) |
81 |
73 80
|
eqtr4i |
|- ( M |`s RR+ ) = ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) |
82 |
81
|
subggrp |
|- ( RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> ( M |`s RR+ ) e. Grp ) |
83 |
72 82
|
mp1i |
|- ( ph -> ( M |`s RR+ ) e. Grp ) |
84 |
|
simpr |
|- ( ( ph /\ k e. RR+ ) -> k e. RR+ ) |
85 |
15
|
adantr |
|- ( ( ph /\ k e. RR+ ) -> ( 1 / ( # ` A ) ) e. RR ) |
86 |
84 85
|
rpcxpcld |
|- ( ( ph /\ k e. RR+ ) -> ( k ^c ( 1 / ( # ` A ) ) ) e. RR+ ) |
87 |
|
eqid |
|- ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) = ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) |
88 |
86 87
|
fmptd |
|- ( ph -> ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) : RR+ --> RR+ ) |
89 |
|
simprl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> x e. RR+ ) |
90 |
89
|
rprege0d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( x e. RR /\ 0 <_ x ) ) |
91 |
|
simprr |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> y e. RR+ ) |
92 |
91
|
rprege0d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( y e. RR /\ 0 <_ y ) ) |
93 |
16
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( 1 / ( # ` A ) ) e. CC ) |
94 |
|
mulcxp |
|- ( ( ( x e. RR /\ 0 <_ x ) /\ ( y e. RR /\ 0 <_ y ) /\ ( 1 / ( # ` A ) ) e. CC ) -> ( ( x x. y ) ^c ( 1 / ( # ` A ) ) ) = ( ( x ^c ( 1 / ( # ` A ) ) ) x. ( y ^c ( 1 / ( # ` A ) ) ) ) ) |
95 |
90 92 93 94
|
syl3anc |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( x x. y ) ^c ( 1 / ( # ` A ) ) ) = ( ( x ^c ( 1 / ( # ` A ) ) ) x. ( y ^c ( 1 / ( # ` A ) ) ) ) ) |
96 |
|
rpmulcl |
|- ( ( x e. RR+ /\ y e. RR+ ) -> ( x x. y ) e. RR+ ) |
97 |
96
|
adantl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( x x. y ) e. RR+ ) |
98 |
|
oveq1 |
|- ( k = ( x x. y ) -> ( k ^c ( 1 / ( # ` A ) ) ) = ( ( x x. y ) ^c ( 1 / ( # ` A ) ) ) ) |
99 |
|
ovex |
|- ( k ^c ( 1 / ( # ` A ) ) ) e. _V |
100 |
98 87 99
|
fvmpt3i |
|- ( ( x x. y ) e. RR+ -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( x x. y ) ) = ( ( x x. y ) ^c ( 1 / ( # ` A ) ) ) ) |
101 |
97 100
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( x x. y ) ) = ( ( x x. y ) ^c ( 1 / ( # ` A ) ) ) ) |
102 |
|
oveq1 |
|- ( k = x -> ( k ^c ( 1 / ( # ` A ) ) ) = ( x ^c ( 1 / ( # ` A ) ) ) ) |
103 |
102 87 99
|
fvmpt3i |
|- ( x e. RR+ -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` x ) = ( x ^c ( 1 / ( # ` A ) ) ) ) |
104 |
89 103
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` x ) = ( x ^c ( 1 / ( # ` A ) ) ) ) |
105 |
|
oveq1 |
|- ( k = y -> ( k ^c ( 1 / ( # ` A ) ) ) = ( y ^c ( 1 / ( # ` A ) ) ) ) |
106 |
105 87 99
|
fvmpt3i |
|- ( y e. RR+ -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` y ) = ( y ^c ( 1 / ( # ` A ) ) ) ) |
107 |
91 106
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` y ) = ( y ^c ( 1 / ( # ` A ) ) ) ) |
108 |
104 107
|
oveq12d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` x ) x. ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` y ) ) = ( ( x ^c ( 1 / ( # ` A ) ) ) x. ( y ^c ( 1 / ( # ` A ) ) ) ) ) |
109 |
95 101 108
|
3eqtr4d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( x x. y ) ) = ( ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` x ) x. ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` y ) ) ) |
110 |
36 36 70 70 83 83 88 109
|
isghmd |
|- ( ph -> ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) e. ( ( M |`s RR+ ) GrpHom ( M |`s RR+ ) ) ) |
111 |
|
ghmmhm |
|- ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) e. ( ( M |`s RR+ ) GrpHom ( M |`s RR+ ) ) -> ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) e. ( ( M |`s RR+ ) MndHom ( M |`s RR+ ) ) ) |
112 |
110 111
|
syl |
|- ( ph -> ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) e. ( ( M |`s RR+ ) MndHom ( M |`s RR+ ) ) ) |
113 |
|
1red |
|- ( ph -> 1 e. RR ) |
114 |
4 2 113
|
fdmfifsupp |
|- ( ph -> F finSupp 1 ) |
115 |
36 57 64 62 2 112 4 114
|
gsummhm |
|- ( ph -> ( ( M |`s RR+ ) gsum ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) o. F ) ) = ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( ( M |`s RR+ ) gsum F ) ) ) |
116 |
53
|
a1i |
|- ( ph -> RR+ e. ( SubMnd ` M ) ) |
117 |
4
|
ffvelrnda |
|- ( ( ph /\ k e. A ) -> ( F ` k ) e. RR+ ) |
118 |
15
|
adantr |
|- ( ( ph /\ k e. A ) -> ( 1 / ( # ` A ) ) e. RR ) |
119 |
117 118
|
rpcxpcld |
|- ( ( ph /\ k e. A ) -> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) e. RR+ ) |
120 |
|
eqid |
|- ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) = ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) |
121 |
119 120
|
fmptd |
|- ( ph -> ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) : A --> RR+ ) |
122 |
2 116 121 32
|
gsumsubm |
|- ( ph -> ( M gsum ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) = ( ( M |`s RR+ ) gsum ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) ) |
123 |
9
|
adantr |
|- ( ( ph /\ k e. A ) -> ( 1 / ( # ` A ) ) e. RR+ ) |
124 |
4
|
feqmptd |
|- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
125 |
2 117 123 124 13
|
offval2 |
|- ( ph -> ( F oF ^c ( A X. { ( 1 / ( # ` A ) ) } ) ) = ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) |
126 |
125
|
oveq2d |
|- ( ph -> ( M gsum ( F oF ^c ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( M gsum ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) ) |
127 |
102
|
cbvmptv |
|- ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) = ( x e. RR+ |-> ( x ^c ( 1 / ( # ` A ) ) ) ) |
128 |
127
|
a1i |
|- ( ph -> ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) = ( x e. RR+ |-> ( x ^c ( 1 / ( # ` A ) ) ) ) ) |
129 |
|
oveq1 |
|- ( x = ( F ` k ) -> ( x ^c ( 1 / ( # ` A ) ) ) = ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) |
130 |
117 124 128 129
|
fmptco |
|- ( ph -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) o. F ) = ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) |
131 |
130
|
oveq2d |
|- ( ph -> ( ( M |`s RR+ ) gsum ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) o. F ) ) = ( ( M |`s RR+ ) gsum ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) ) |
132 |
122 126 131
|
3eqtr4rd |
|- ( ph -> ( ( M |`s RR+ ) gsum ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) o. F ) ) = ( M gsum ( F oF ^c ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) |
133 |
36 57 64 2 4 114
|
gsumcl |
|- ( ph -> ( ( M |`s RR+ ) gsum F ) e. RR+ ) |
134 |
|
oveq1 |
|- ( k = ( ( M |`s RR+ ) gsum F ) -> ( k ^c ( 1 / ( # ` A ) ) ) = ( ( ( M |`s RR+ ) gsum F ) ^c ( 1 / ( # ` A ) ) ) ) |
135 |
134 87 99
|
fvmpt3i |
|- ( ( ( M |`s RR+ ) gsum F ) e. RR+ -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( ( M |`s RR+ ) gsum F ) ) = ( ( ( M |`s RR+ ) gsum F ) ^c ( 1 / ( # ` A ) ) ) ) |
136 |
133 135
|
syl |
|- ( ph -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( ( M |`s RR+ ) gsum F ) ) = ( ( ( M |`s RR+ ) gsum F ) ^c ( 1 / ( # ` A ) ) ) ) |
137 |
2 116 4 32
|
gsumsubm |
|- ( ph -> ( M gsum F ) = ( ( M |`s RR+ ) gsum F ) ) |
138 |
137
|
oveq1d |
|- ( ph -> ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) = ( ( ( M |`s RR+ ) gsum F ) ^c ( 1 / ( # ` A ) ) ) ) |
139 |
136 138
|
eqtr4d |
|- ( ph -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( ( M |`s RR+ ) gsum F ) ) = ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) ) |
140 |
115 132 139
|
3eqtr3d |
|- ( ph -> ( M gsum ( F oF ^c ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) ) |
141 |
117
|
rpcnd |
|- ( ( ph /\ k e. A ) -> ( F ` k ) e. CC ) |
142 |
2 141
|
fsumcl |
|- ( ph -> sum_ k e. A ( F ` k ) e. CC ) |
143 |
142 23 24
|
divrecd |
|- ( ph -> ( sum_ k e. A ( F ` k ) / ( # ` A ) ) = ( sum_ k e. A ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) |
144 |
2 16 141
|
fsummulc1 |
|- ( ph -> ( sum_ k e. A ( F ` k ) x. ( 1 / ( # ` A ) ) ) = sum_ k e. A ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) |
145 |
143 144
|
eqtr2d |
|- ( ph -> sum_ k e. A ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) = ( sum_ k e. A ( F ` k ) / ( # ` A ) ) ) |
146 |
16
|
adantr |
|- ( ( ph /\ k e. A ) -> ( 1 / ( # ` A ) ) e. CC ) |
147 |
141 146
|
mulcld |
|- ( ( ph /\ k e. A ) -> ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) e. CC ) |
148 |
2 147
|
gsumfsum |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) ) = sum_ k e. A ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) |
149 |
2 141
|
gsumfsum |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) = sum_ k e. A ( F ` k ) ) |
150 |
149
|
oveq1d |
|- ( ph -> ( ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) / ( # ` A ) ) = ( sum_ k e. A ( F ` k ) / ( # ` A ) ) ) |
151 |
145 148 150
|
3eqtr4d |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) ) = ( ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) / ( # ` A ) ) ) |
152 |
2 117 146 124 13
|
offval2 |
|- ( ph -> ( F oF x. ( A X. { ( 1 / ( # ` A ) ) } ) ) = ( k e. A |-> ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) ) |
153 |
152
|
oveq2d |
|- ( ph -> ( CCfld gsum ( F oF x. ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( CCfld gsum ( k e. A |-> ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) ) ) |
154 |
124
|
oveq2d |
|- ( ph -> ( CCfld gsum F ) = ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) ) |
155 |
154
|
oveq1d |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) = ( ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) / ( # ` A ) ) ) |
156 |
151 153 155
|
3eqtr4d |
|- ( ph -> ( CCfld gsum ( F oF x. ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
157 |
28 140 156
|
3brtr3d |
|- ( ph -> ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) <_ ( ( CCfld gsum F ) / ( # ` A ) ) ) |