| Step | Hyp | Ref | Expression | 
						
							| 1 |  | amgmlemALT.0 |  |-  M = ( mulGrp ` CCfld ) | 
						
							| 2 |  | amgmlemALT.1 |  |-  ( ph -> A e. Fin ) | 
						
							| 3 |  | amgmlemALT.2 |  |-  ( ph -> A =/= (/) ) | 
						
							| 4 |  | amgmlemALT.3 |  |-  ( ph -> F : A --> RR+ ) | 
						
							| 5 |  | hashnncl |  |-  ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) | 
						
							| 7 | 3 6 | mpbird |  |-  ( ph -> ( # ` A ) e. NN ) | 
						
							| 8 | 7 | nnrpd |  |-  ( ph -> ( # ` A ) e. RR+ ) | 
						
							| 9 | 8 | rpreccld |  |-  ( ph -> ( 1 / ( # ` A ) ) e. RR+ ) | 
						
							| 10 |  | fconst6g |  |-  ( ( 1 / ( # ` A ) ) e. RR+ -> ( A X. { ( 1 / ( # ` A ) ) } ) : A --> RR+ ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> ( A X. { ( 1 / ( # ` A ) ) } ) : A --> RR+ ) | 
						
							| 12 |  | fconstmpt |  |-  ( A X. { ( 1 / ( # ` A ) ) } ) = ( k e. A |-> ( 1 / ( # ` A ) ) ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( A X. { ( 1 / ( # ` A ) ) } ) = ( k e. A |-> ( 1 / ( # ` A ) ) ) ) | 
						
							| 14 | 13 | oveq2d |  |-  ( ph -> ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) = ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) ) | 
						
							| 15 | 7 | nnrecred |  |-  ( ph -> ( 1 / ( # ` A ) ) e. RR ) | 
						
							| 16 | 15 | recnd |  |-  ( ph -> ( 1 / ( # ` A ) ) e. CC ) | 
						
							| 17 |  | simpl |  |-  ( ( A e. Fin /\ ( 1 / ( # ` A ) ) e. CC ) -> A e. Fin ) | 
						
							| 18 |  | simplr |  |-  ( ( ( A e. Fin /\ ( 1 / ( # ` A ) ) e. CC ) /\ k e. A ) -> ( 1 / ( # ` A ) ) e. CC ) | 
						
							| 19 | 17 18 | gsumfsum |  |-  ( ( A e. Fin /\ ( 1 / ( # ` A ) ) e. CC ) -> ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) = sum_ k e. A ( 1 / ( # ` A ) ) ) | 
						
							| 20 | 2 16 19 | syl2anc |  |-  ( ph -> ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) = sum_ k e. A ( 1 / ( # ` A ) ) ) | 
						
							| 21 |  | fsumconst |  |-  ( ( A e. Fin /\ ( 1 / ( # ` A ) ) e. CC ) -> sum_ k e. A ( 1 / ( # ` A ) ) = ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) ) | 
						
							| 22 | 2 16 21 | syl2anc |  |-  ( ph -> sum_ k e. A ( 1 / ( # ` A ) ) = ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) ) | 
						
							| 23 | 7 | nncnd |  |-  ( ph -> ( # ` A ) e. CC ) | 
						
							| 24 | 7 | nnne0d |  |-  ( ph -> ( # ` A ) =/= 0 ) | 
						
							| 25 | 23 24 | recidd |  |-  ( ph -> ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) = 1 ) | 
						
							| 26 | 22 25 | eqtrd |  |-  ( ph -> sum_ k e. A ( 1 / ( # ` A ) ) = 1 ) | 
						
							| 27 | 14 20 26 | 3eqtrd |  |-  ( ph -> ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) = 1 ) | 
						
							| 28 | 1 2 3 4 11 27 | amgmwlem |  |-  ( ph -> ( M gsum ( F oF ^c ( A X. { ( 1 / ( # ` A ) ) } ) ) ) <_ ( CCfld gsum ( F oF x. ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) | 
						
							| 29 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 30 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 31 | 29 30 | sstri |  |-  RR+ C_ CC | 
						
							| 32 |  | eqid |  |-  ( M |`s RR+ ) = ( M |`s RR+ ) | 
						
							| 33 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 34 | 1 33 | mgpbas |  |-  CC = ( Base ` M ) | 
						
							| 35 | 32 34 | ressbas2 |  |-  ( RR+ C_ CC -> RR+ = ( Base ` ( M |`s RR+ ) ) ) | 
						
							| 36 | 31 35 | ax-mp |  |-  RR+ = ( Base ` ( M |`s RR+ ) ) | 
						
							| 37 |  | cnfld1 |  |-  1 = ( 1r ` CCfld ) | 
						
							| 38 | 1 37 | ringidval |  |-  1 = ( 0g ` M ) | 
						
							| 39 | 1 | oveq1i |  |-  ( M |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) | 
						
							| 40 | 39 | rpmsubg |  |-  RR+ e. ( SubGrp ` ( M |`s ( CC \ { 0 } ) ) ) | 
						
							| 41 |  | subgsubm |  |-  ( RR+ e. ( SubGrp ` ( M |`s ( CC \ { 0 } ) ) ) -> RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) ) | 
						
							| 42 | 40 41 | ax-mp |  |-  RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) | 
						
							| 43 |  | cnring |  |-  CCfld e. Ring | 
						
							| 44 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 45 |  | cndrng |  |-  CCfld e. DivRing | 
						
							| 46 | 33 44 45 | drngui |  |-  ( CC \ { 0 } ) = ( Unit ` CCfld ) | 
						
							| 47 | 46 1 | unitsubm |  |-  ( CCfld e. Ring -> ( CC \ { 0 } ) e. ( SubMnd ` M ) ) | 
						
							| 48 | 43 47 | ax-mp |  |-  ( CC \ { 0 } ) e. ( SubMnd ` M ) | 
						
							| 49 |  | eqid |  |-  ( M |`s ( CC \ { 0 } ) ) = ( M |`s ( CC \ { 0 } ) ) | 
						
							| 50 | 49 | subsubm |  |-  ( ( CC \ { 0 } ) e. ( SubMnd ` M ) -> ( RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) <-> ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) ) ) | 
						
							| 51 | 48 50 | ax-mp |  |-  ( RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) <-> ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) ) | 
						
							| 52 | 42 51 | mpbi |  |-  ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) | 
						
							| 53 | 52 | simpli |  |-  RR+ e. ( SubMnd ` M ) | 
						
							| 54 |  | eqid |  |-  ( 0g ` M ) = ( 0g ` M ) | 
						
							| 55 | 32 54 | subm0 |  |-  ( RR+ e. ( SubMnd ` M ) -> ( 0g ` M ) = ( 0g ` ( M |`s RR+ ) ) ) | 
						
							| 56 | 53 55 | ax-mp |  |-  ( 0g ` M ) = ( 0g ` ( M |`s RR+ ) ) | 
						
							| 57 | 38 56 | eqtri |  |-  1 = ( 0g ` ( M |`s RR+ ) ) | 
						
							| 58 |  | cncrng |  |-  CCfld e. CRing | 
						
							| 59 | 1 | crngmgp |  |-  ( CCfld e. CRing -> M e. CMnd ) | 
						
							| 60 | 58 59 | ax-mp |  |-  M e. CMnd | 
						
							| 61 | 32 | submmnd |  |-  ( RR+ e. ( SubMnd ` M ) -> ( M |`s RR+ ) e. Mnd ) | 
						
							| 62 | 53 61 | mp1i |  |-  ( ph -> ( M |`s RR+ ) e. Mnd ) | 
						
							| 63 | 32 | subcmn |  |-  ( ( M e. CMnd /\ ( M |`s RR+ ) e. Mnd ) -> ( M |`s RR+ ) e. CMnd ) | 
						
							| 64 | 60 62 63 | sylancr |  |-  ( ph -> ( M |`s RR+ ) e. CMnd ) | 
						
							| 65 |  | reex |  |-  RR e. _V | 
						
							| 66 | 65 29 | ssexi |  |-  RR+ e. _V | 
						
							| 67 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 68 | 1 67 | mgpplusg |  |-  x. = ( +g ` M ) | 
						
							| 69 | 32 68 | ressplusg |  |-  ( RR+ e. _V -> x. = ( +g ` ( M |`s RR+ ) ) ) | 
						
							| 70 | 66 69 | ax-mp |  |-  x. = ( +g ` ( M |`s RR+ ) ) | 
						
							| 71 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) | 
						
							| 72 | 71 | rpmsubg |  |-  RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) | 
						
							| 73 | 1 | oveq1i |  |-  ( M |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) | 
						
							| 74 |  | cnex |  |-  CC e. _V | 
						
							| 75 |  | difss |  |-  ( CC \ { 0 } ) C_ CC | 
						
							| 76 | 74 75 | ssexi |  |-  ( CC \ { 0 } ) e. _V | 
						
							| 77 |  | rpcndif0 |  |-  ( w e. RR+ -> w e. ( CC \ { 0 } ) ) | 
						
							| 78 | 77 | ssriv |  |-  RR+ C_ ( CC \ { 0 } ) | 
						
							| 79 |  | ressabs |  |-  ( ( ( CC \ { 0 } ) e. _V /\ RR+ C_ ( CC \ { 0 } ) ) -> ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) ) | 
						
							| 80 | 76 78 79 | mp2an |  |-  ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) | 
						
							| 81 | 73 80 | eqtr4i |  |-  ( M |`s RR+ ) = ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) | 
						
							| 82 | 81 | subggrp |  |-  ( RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> ( M |`s RR+ ) e. Grp ) | 
						
							| 83 | 72 82 | mp1i |  |-  ( ph -> ( M |`s RR+ ) e. Grp ) | 
						
							| 84 |  | simpr |  |-  ( ( ph /\ k e. RR+ ) -> k e. RR+ ) | 
						
							| 85 | 15 | adantr |  |-  ( ( ph /\ k e. RR+ ) -> ( 1 / ( # ` A ) ) e. RR ) | 
						
							| 86 | 84 85 | rpcxpcld |  |-  ( ( ph /\ k e. RR+ ) -> ( k ^c ( 1 / ( # ` A ) ) ) e. RR+ ) | 
						
							| 87 |  | eqid |  |-  ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) = ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 88 | 86 87 | fmptd |  |-  ( ph -> ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) : RR+ --> RR+ ) | 
						
							| 89 |  | simprl |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> x e. RR+ ) | 
						
							| 90 | 89 | rprege0d |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 91 |  | simprr |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> y e. RR+ ) | 
						
							| 92 | 91 | rprege0d |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( y e. RR /\ 0 <_ y ) ) | 
						
							| 93 | 16 | adantr |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( 1 / ( # ` A ) ) e. CC ) | 
						
							| 94 |  | mulcxp |  |-  ( ( ( x e. RR /\ 0 <_ x ) /\ ( y e. RR /\ 0 <_ y ) /\ ( 1 / ( # ` A ) ) e. CC ) -> ( ( x x. y ) ^c ( 1 / ( # ` A ) ) ) = ( ( x ^c ( 1 / ( # ` A ) ) ) x. ( y ^c ( 1 / ( # ` A ) ) ) ) ) | 
						
							| 95 | 90 92 93 94 | syl3anc |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( x x. y ) ^c ( 1 / ( # ` A ) ) ) = ( ( x ^c ( 1 / ( # ` A ) ) ) x. ( y ^c ( 1 / ( # ` A ) ) ) ) ) | 
						
							| 96 |  | rpmulcl |  |-  ( ( x e. RR+ /\ y e. RR+ ) -> ( x x. y ) e. RR+ ) | 
						
							| 97 | 96 | adantl |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( x x. y ) e. RR+ ) | 
						
							| 98 |  | oveq1 |  |-  ( k = ( x x. y ) -> ( k ^c ( 1 / ( # ` A ) ) ) = ( ( x x. y ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 99 |  | ovex |  |-  ( k ^c ( 1 / ( # ` A ) ) ) e. _V | 
						
							| 100 | 98 87 99 | fvmpt3i |  |-  ( ( x x. y ) e. RR+ -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( x x. y ) ) = ( ( x x. y ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 101 | 97 100 | syl |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( x x. y ) ) = ( ( x x. y ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 102 |  | oveq1 |  |-  ( k = x -> ( k ^c ( 1 / ( # ` A ) ) ) = ( x ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 103 | 102 87 99 | fvmpt3i |  |-  ( x e. RR+ -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` x ) = ( x ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 104 | 89 103 | syl |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` x ) = ( x ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 105 |  | oveq1 |  |-  ( k = y -> ( k ^c ( 1 / ( # ` A ) ) ) = ( y ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 106 | 105 87 99 | fvmpt3i |  |-  ( y e. RR+ -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` y ) = ( y ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 107 | 91 106 | syl |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` y ) = ( y ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 108 | 104 107 | oveq12d |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` x ) x. ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` y ) ) = ( ( x ^c ( 1 / ( # ` A ) ) ) x. ( y ^c ( 1 / ( # ` A ) ) ) ) ) | 
						
							| 109 | 95 101 108 | 3eqtr4d |  |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( x x. y ) ) = ( ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` x ) x. ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` y ) ) ) | 
						
							| 110 | 36 36 70 70 83 83 88 109 | isghmd |  |-  ( ph -> ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) e. ( ( M |`s RR+ ) GrpHom ( M |`s RR+ ) ) ) | 
						
							| 111 |  | ghmmhm |  |-  ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) e. ( ( M |`s RR+ ) GrpHom ( M |`s RR+ ) ) -> ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) e. ( ( M |`s RR+ ) MndHom ( M |`s RR+ ) ) ) | 
						
							| 112 | 110 111 | syl |  |-  ( ph -> ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) e. ( ( M |`s RR+ ) MndHom ( M |`s RR+ ) ) ) | 
						
							| 113 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 114 | 4 2 113 | fdmfifsupp |  |-  ( ph -> F finSupp 1 ) | 
						
							| 115 | 36 57 64 62 2 112 4 114 | gsummhm |  |-  ( ph -> ( ( M |`s RR+ ) gsum ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) o. F ) ) = ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( ( M |`s RR+ ) gsum F ) ) ) | 
						
							| 116 | 53 | a1i |  |-  ( ph -> RR+ e. ( SubMnd ` M ) ) | 
						
							| 117 | 4 | ffvelcdmda |  |-  ( ( ph /\ k e. A ) -> ( F ` k ) e. RR+ ) | 
						
							| 118 | 15 | adantr |  |-  ( ( ph /\ k e. A ) -> ( 1 / ( # ` A ) ) e. RR ) | 
						
							| 119 | 117 118 | rpcxpcld |  |-  ( ( ph /\ k e. A ) -> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) e. RR+ ) | 
						
							| 120 |  | eqid |  |-  ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) = ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 121 | 119 120 | fmptd |  |-  ( ph -> ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) : A --> RR+ ) | 
						
							| 122 | 2 116 121 32 | gsumsubm |  |-  ( ph -> ( M gsum ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) = ( ( M |`s RR+ ) gsum ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) ) | 
						
							| 123 | 9 | adantr |  |-  ( ( ph /\ k e. A ) -> ( 1 / ( # ` A ) ) e. RR+ ) | 
						
							| 124 | 4 | feqmptd |  |-  ( ph -> F = ( k e. A |-> ( F ` k ) ) ) | 
						
							| 125 | 2 117 123 124 13 | offval2 |  |-  ( ph -> ( F oF ^c ( A X. { ( 1 / ( # ` A ) ) } ) ) = ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) | 
						
							| 126 | 125 | oveq2d |  |-  ( ph -> ( M gsum ( F oF ^c ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( M gsum ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) ) | 
						
							| 127 | 102 | cbvmptv |  |-  ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) = ( x e. RR+ |-> ( x ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 128 | 127 | a1i |  |-  ( ph -> ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) = ( x e. RR+ |-> ( x ^c ( 1 / ( # ` A ) ) ) ) ) | 
						
							| 129 |  | oveq1 |  |-  ( x = ( F ` k ) -> ( x ^c ( 1 / ( # ` A ) ) ) = ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 130 | 117 124 128 129 | fmptco |  |-  ( ph -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) o. F ) = ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) | 
						
							| 131 | 130 | oveq2d |  |-  ( ph -> ( ( M |`s RR+ ) gsum ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) o. F ) ) = ( ( M |`s RR+ ) gsum ( k e. A |-> ( ( F ` k ) ^c ( 1 / ( # ` A ) ) ) ) ) ) | 
						
							| 132 | 122 126 131 | 3eqtr4rd |  |-  ( ph -> ( ( M |`s RR+ ) gsum ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) o. F ) ) = ( M gsum ( F oF ^c ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) | 
						
							| 133 | 36 57 64 2 4 114 | gsumcl |  |-  ( ph -> ( ( M |`s RR+ ) gsum F ) e. RR+ ) | 
						
							| 134 |  | oveq1 |  |-  ( k = ( ( M |`s RR+ ) gsum F ) -> ( k ^c ( 1 / ( # ` A ) ) ) = ( ( ( M |`s RR+ ) gsum F ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 135 | 134 87 99 | fvmpt3i |  |-  ( ( ( M |`s RR+ ) gsum F ) e. RR+ -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( ( M |`s RR+ ) gsum F ) ) = ( ( ( M |`s RR+ ) gsum F ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 136 | 133 135 | syl |  |-  ( ph -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( ( M |`s RR+ ) gsum F ) ) = ( ( ( M |`s RR+ ) gsum F ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 137 | 2 116 4 32 | gsumsubm |  |-  ( ph -> ( M gsum F ) = ( ( M |`s RR+ ) gsum F ) ) | 
						
							| 138 | 137 | oveq1d |  |-  ( ph -> ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) = ( ( ( M |`s RR+ ) gsum F ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 139 | 136 138 | eqtr4d |  |-  ( ph -> ( ( k e. RR+ |-> ( k ^c ( 1 / ( # ` A ) ) ) ) ` ( ( M |`s RR+ ) gsum F ) ) = ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 140 | 115 132 139 | 3eqtr3d |  |-  ( ph -> ( M gsum ( F oF ^c ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) ) | 
						
							| 141 | 117 | rpcnd |  |-  ( ( ph /\ k e. A ) -> ( F ` k ) e. CC ) | 
						
							| 142 | 2 141 | fsumcl |  |-  ( ph -> sum_ k e. A ( F ` k ) e. CC ) | 
						
							| 143 | 142 23 24 | divrecd |  |-  ( ph -> ( sum_ k e. A ( F ` k ) / ( # ` A ) ) = ( sum_ k e. A ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) | 
						
							| 144 | 2 16 141 | fsummulc1 |  |-  ( ph -> ( sum_ k e. A ( F ` k ) x. ( 1 / ( # ` A ) ) ) = sum_ k e. A ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) | 
						
							| 145 | 143 144 | eqtr2d |  |-  ( ph -> sum_ k e. A ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) = ( sum_ k e. A ( F ` k ) / ( # ` A ) ) ) | 
						
							| 146 | 16 | adantr |  |-  ( ( ph /\ k e. A ) -> ( 1 / ( # ` A ) ) e. CC ) | 
						
							| 147 | 141 146 | mulcld |  |-  ( ( ph /\ k e. A ) -> ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) e. CC ) | 
						
							| 148 | 2 147 | gsumfsum |  |-  ( ph -> ( CCfld gsum ( k e. A |-> ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) ) = sum_ k e. A ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) | 
						
							| 149 | 2 141 | gsumfsum |  |-  ( ph -> ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) = sum_ k e. A ( F ` k ) ) | 
						
							| 150 | 149 | oveq1d |  |-  ( ph -> ( ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) / ( # ` A ) ) = ( sum_ k e. A ( F ` k ) / ( # ` A ) ) ) | 
						
							| 151 | 145 148 150 | 3eqtr4d |  |-  ( ph -> ( CCfld gsum ( k e. A |-> ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) ) = ( ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) / ( # ` A ) ) ) | 
						
							| 152 | 2 117 146 124 13 | offval2 |  |-  ( ph -> ( F oF x. ( A X. { ( 1 / ( # ` A ) ) } ) ) = ( k e. A |-> ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) ) | 
						
							| 153 | 152 | oveq2d |  |-  ( ph -> ( CCfld gsum ( F oF x. ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( CCfld gsum ( k e. A |-> ( ( F ` k ) x. ( 1 / ( # ` A ) ) ) ) ) ) | 
						
							| 154 | 124 | oveq2d |  |-  ( ph -> ( CCfld gsum F ) = ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) ) | 
						
							| 155 | 154 | oveq1d |  |-  ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) = ( ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) / ( # ` A ) ) ) | 
						
							| 156 | 151 153 155 | 3eqtr4d |  |-  ( ph -> ( CCfld gsum ( F oF x. ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) | 
						
							| 157 | 28 140 156 | 3brtr3d |  |-  ( ph -> ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) <_ ( ( CCfld gsum F ) / ( # ` A ) ) ) |