Step |
Hyp |
Ref |
Expression |
1 |
|
amgmlemALT.0 |
⊢ 𝑀 = ( mulGrp ‘ ℂfld ) |
2 |
|
amgmlemALT.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
amgmlemALT.2 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
4 |
|
amgmlemALT.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ+ ) |
5 |
|
hashnncl |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 𝐴 ≠ ∅ ) ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 𝐴 ≠ ∅ ) ) |
7 |
3 6
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
8 |
7
|
nnrpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℝ+ ) |
9 |
8
|
rpreccld |
⊢ ( 𝜑 → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℝ+ ) |
10 |
|
fconst6g |
⊢ ( ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℝ+ → ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) : 𝐴 ⟶ ℝ+ ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) : 𝐴 ⟶ ℝ+ ) |
12 |
|
fconstmpt |
⊢ ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) = ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) = ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) = ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) |
15 |
7
|
nnrecred |
⊢ ( 𝜑 → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( 𝜑 → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
17 |
|
simpl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) → 𝐴 ∈ Fin ) |
18 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) ∧ 𝑘 ∈ 𝐴 ) → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
19 |
17 18
|
gsumfsum |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) = Σ 𝑘 ∈ 𝐴 ( 1 / ( ♯ ‘ 𝐴 ) ) ) |
20 |
2 16 19
|
syl2anc |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) = Σ 𝑘 ∈ 𝐴 ( 1 / ( ♯ ‘ 𝐴 ) ) ) |
21 |
|
fsumconst |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) → Σ 𝑘 ∈ 𝐴 ( 1 / ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐴 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
22 |
2 16 21
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 1 / ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐴 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
23 |
7
|
nncnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
24 |
7
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ≠ 0 ) |
25 |
23 24
|
recidd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) = 1 ) |
26 |
22 25
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 1 / ( ♯ ‘ 𝐴 ) ) = 1 ) |
27 |
14 20 26
|
3eqtrd |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) = 1 ) |
28 |
1 2 3 4 11 27
|
amgmwlem |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ∘f ↑𝑐 ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) ≤ ( ℂfld Σg ( 𝐹 ∘f · ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) ) |
29 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
30 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
31 |
29 30
|
sstri |
⊢ ℝ+ ⊆ ℂ |
32 |
|
eqid |
⊢ ( 𝑀 ↾s ℝ+ ) = ( 𝑀 ↾s ℝ+ ) |
33 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
34 |
1 33
|
mgpbas |
⊢ ℂ = ( Base ‘ 𝑀 ) |
35 |
32 34
|
ressbas2 |
⊢ ( ℝ+ ⊆ ℂ → ℝ+ = ( Base ‘ ( 𝑀 ↾s ℝ+ ) ) ) |
36 |
31 35
|
ax-mp |
⊢ ℝ+ = ( Base ‘ ( 𝑀 ↾s ℝ+ ) ) |
37 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
38 |
1 37
|
ringidval |
⊢ 1 = ( 0g ‘ 𝑀 ) |
39 |
1
|
oveq1i |
⊢ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
40 |
39
|
rpmsubg |
⊢ ℝ+ ∈ ( SubGrp ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) |
41 |
|
subgsubm |
⊢ ( ℝ+ ∈ ( SubGrp ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) → ℝ+ ∈ ( SubMnd ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) ) |
42 |
40 41
|
ax-mp |
⊢ ℝ+ ∈ ( SubMnd ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) |
43 |
|
cnring |
⊢ ℂfld ∈ Ring |
44 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
45 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
46 |
33 44 45
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
47 |
46 1
|
unitsubm |
⊢ ( ℂfld ∈ Ring → ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑀 ) ) |
48 |
43 47
|
ax-mp |
⊢ ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑀 ) |
49 |
|
eqid |
⊢ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) = ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) |
50 |
49
|
subsubm |
⊢ ( ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑀 ) → ( ℝ+ ∈ ( SubMnd ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) ↔ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) ∧ ℝ+ ⊆ ( ℂ ∖ { 0 } ) ) ) ) |
51 |
48 50
|
ax-mp |
⊢ ( ℝ+ ∈ ( SubMnd ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) ↔ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) ∧ ℝ+ ⊆ ( ℂ ∖ { 0 } ) ) ) |
52 |
42 51
|
mpbi |
⊢ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) ∧ ℝ+ ⊆ ( ℂ ∖ { 0 } ) ) |
53 |
52
|
simpli |
⊢ ℝ+ ∈ ( SubMnd ‘ 𝑀 ) |
54 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
55 |
32 54
|
subm0 |
⊢ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) → ( 0g ‘ 𝑀 ) = ( 0g ‘ ( 𝑀 ↾s ℝ+ ) ) ) |
56 |
53 55
|
ax-mp |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ ( 𝑀 ↾s ℝ+ ) ) |
57 |
38 56
|
eqtri |
⊢ 1 = ( 0g ‘ ( 𝑀 ↾s ℝ+ ) ) |
58 |
|
cncrng |
⊢ ℂfld ∈ CRing |
59 |
1
|
crngmgp |
⊢ ( ℂfld ∈ CRing → 𝑀 ∈ CMnd ) |
60 |
58 59
|
ax-mp |
⊢ 𝑀 ∈ CMnd |
61 |
32
|
submmnd |
⊢ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑀 ↾s ℝ+ ) ∈ Mnd ) |
62 |
53 61
|
mp1i |
⊢ ( 𝜑 → ( 𝑀 ↾s ℝ+ ) ∈ Mnd ) |
63 |
32
|
subcmn |
⊢ ( ( 𝑀 ∈ CMnd ∧ ( 𝑀 ↾s ℝ+ ) ∈ Mnd ) → ( 𝑀 ↾s ℝ+ ) ∈ CMnd ) |
64 |
60 62 63
|
sylancr |
⊢ ( 𝜑 → ( 𝑀 ↾s ℝ+ ) ∈ CMnd ) |
65 |
|
reex |
⊢ ℝ ∈ V |
66 |
65 29
|
ssexi |
⊢ ℝ+ ∈ V |
67 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
68 |
1 67
|
mgpplusg |
⊢ · = ( +g ‘ 𝑀 ) |
69 |
32 68
|
ressplusg |
⊢ ( ℝ+ ∈ V → · = ( +g ‘ ( 𝑀 ↾s ℝ+ ) ) ) |
70 |
66 69
|
ax-mp |
⊢ · = ( +g ‘ ( 𝑀 ↾s ℝ+ ) ) |
71 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
72 |
71
|
rpmsubg |
⊢ ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
73 |
1
|
oveq1i |
⊢ ( 𝑀 ↾s ℝ+ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) |
74 |
|
cnex |
⊢ ℂ ∈ V |
75 |
|
difss |
⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ |
76 |
74 75
|
ssexi |
⊢ ( ℂ ∖ { 0 } ) ∈ V |
77 |
|
rpcndif0 |
⊢ ( 𝑤 ∈ ℝ+ → 𝑤 ∈ ( ℂ ∖ { 0 } ) ) |
78 |
77
|
ssriv |
⊢ ℝ+ ⊆ ( ℂ ∖ { 0 } ) |
79 |
|
ressabs |
⊢ ( ( ( ℂ ∖ { 0 } ) ∈ V ∧ ℝ+ ⊆ ( ℂ ∖ { 0 } ) ) → ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s ℝ+ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) ) |
80 |
76 78 79
|
mp2an |
⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s ℝ+ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) |
81 |
73 80
|
eqtr4i |
⊢ ( 𝑀 ↾s ℝ+ ) = ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s ℝ+ ) |
82 |
81
|
subggrp |
⊢ ( ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → ( 𝑀 ↾s ℝ+ ) ∈ Grp ) |
83 |
72 82
|
mp1i |
⊢ ( 𝜑 → ( 𝑀 ↾s ℝ+ ) ∈ Grp ) |
84 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ+ ) → 𝑘 ∈ ℝ+ ) |
85 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ+ ) → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
86 |
84 85
|
rpcxpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ+ ) → ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
87 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) = ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
88 |
86 87
|
fmptd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) : ℝ+ ⟶ ℝ+ ) |
89 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → 𝑥 ∈ ℝ+ ) |
90 |
89
|
rprege0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
91 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → 𝑦 ∈ ℝ+ ) |
92 |
91
|
rprege0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) |
93 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
94 |
|
mulcxp |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ∧ ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝑥 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) · ( 𝑦 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) |
95 |
90 92 93 94
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( ( 𝑥 · 𝑦 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝑥 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) · ( 𝑦 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) |
96 |
|
rpmulcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ ) |
97 |
96
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ ) |
98 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑥 · 𝑦 ) → ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝑥 · 𝑦 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
99 |
|
ovex |
⊢ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ∈ V |
100 |
98 87 99
|
fvmpt3i |
⊢ ( ( 𝑥 · 𝑦 ) ∈ ℝ+ → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
101 |
97 100
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
102 |
|
oveq1 |
⊢ ( 𝑘 = 𝑥 → ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( 𝑥 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
103 |
102 87 99
|
fvmpt3i |
⊢ ( 𝑥 ∈ ℝ+ → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ 𝑥 ) = ( 𝑥 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
104 |
89 103
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ 𝑥 ) = ( 𝑥 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
105 |
|
oveq1 |
⊢ ( 𝑘 = 𝑦 → ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( 𝑦 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
106 |
105 87 99
|
fvmpt3i |
⊢ ( 𝑦 ∈ ℝ+ → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( 𝑦 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
107 |
91 106
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( 𝑦 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
108 |
104 107
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ 𝑥 ) · ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) = ( ( 𝑥 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) · ( 𝑦 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) |
109 |
95 101 108
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ ( 𝑥 · 𝑦 ) ) = ( ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ 𝑥 ) · ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) ) |
110 |
36 36 70 70 83 83 88 109
|
isghmd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ∈ ( ( 𝑀 ↾s ℝ+ ) GrpHom ( 𝑀 ↾s ℝ+ ) ) ) |
111 |
|
ghmmhm |
⊢ ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ∈ ( ( 𝑀 ↾s ℝ+ ) GrpHom ( 𝑀 ↾s ℝ+ ) ) → ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ∈ ( ( 𝑀 ↾s ℝ+ ) MndHom ( 𝑀 ↾s ℝ+ ) ) ) |
112 |
110 111
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ∈ ( ( 𝑀 ↾s ℝ+ ) MndHom ( 𝑀 ↾s ℝ+ ) ) ) |
113 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
114 |
4 2 113
|
fdmfifsupp |
⊢ ( 𝜑 → 𝐹 finSupp 1 ) |
115 |
36 57 64 62 2 112 4 114
|
gsummhm |
⊢ ( 𝜑 → ( ( 𝑀 ↾s ℝ+ ) Σg ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ∘ 𝐹 ) ) = ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ) ) |
116 |
53
|
a1i |
⊢ ( 𝜑 → ℝ+ ∈ ( SubMnd ‘ 𝑀 ) ) |
117 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
118 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
119 |
117 118
|
rpcxpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
120 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
121 |
119 120
|
fmptd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) : 𝐴 ⟶ ℝ+ ) |
122 |
2 116 121 32
|
gsumsubm |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) = ( ( 𝑀 ↾s ℝ+ ) Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) ) |
123 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℝ+ ) |
124 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
125 |
2 117 123 124 13
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f ↑𝑐 ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) |
126 |
125
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ∘f ↑𝑐 ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) = ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) ) |
127 |
102
|
cbvmptv |
⊢ ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
128 |
127
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) |
129 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 𝑥 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
130 |
117 124 128 129
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ∘ 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) |
131 |
130
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ↾s ℝ+ ) Σg ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ∘ 𝐹 ) ) = ( ( 𝑀 ↾s ℝ+ ) Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) ) |
132 |
122 126 131
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝑀 ↾s ℝ+ ) Σg ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ∘ 𝐹 ) ) = ( 𝑀 Σg ( 𝐹 ∘f ↑𝑐 ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) ) |
133 |
36 57 64 2 4 114
|
gsumcl |
⊢ ( 𝜑 → ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ∈ ℝ+ ) |
134 |
|
oveq1 |
⊢ ( 𝑘 = ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) → ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
135 |
134 87 99
|
fvmpt3i |
⊢ ( ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ∈ ℝ+ → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ) = ( ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
136 |
133 135
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ) = ( ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
137 |
2 116 4 32
|
gsumsubm |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ) |
138 |
137
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 Σg 𝐹 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
139 |
136 138
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℝ+ ↦ ( 𝑘 ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ‘ ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ) = ( ( 𝑀 Σg 𝐹 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
140 |
115 132 139
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ∘f ↑𝑐 ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) = ( ( 𝑀 Σg 𝐹 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
141 |
117
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
142 |
2 141
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
143 |
142 23 24
|
divrecd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) / ( ♯ ‘ 𝐴 ) ) = ( Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
144 |
2 16 141
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) = Σ 𝑘 ∈ 𝐴 ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
145 |
143 144
|
eqtr2d |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) / ( ♯ ‘ 𝐴 ) ) ) |
146 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
147 |
141 146
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ∈ ℂ ) |
148 |
2 147
|
gsumfsum |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) = Σ 𝑘 ∈ 𝐴 ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
149 |
2 141
|
gsumfsum |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ) |
150 |
149
|
oveq1d |
⊢ ( 𝜑 → ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) / ( ♯ ‘ 𝐴 ) ) = ( Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) / ( ♯ ‘ 𝐴 ) ) ) |
151 |
145 148 150
|
3eqtr4d |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) = ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) / ( ♯ ‘ 𝐴 ) ) ) |
152 |
2 117 146 124 13
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f · ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) |
153 |
152
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝐹 ∘f · ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) = ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) ) ) |
154 |
124
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg 𝐹 ) = ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
155 |
154
|
oveq1d |
⊢ ( 𝜑 → ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) = ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) / ( ♯ ‘ 𝐴 ) ) ) |
156 |
151 153 155
|
3eqtr4d |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝐹 ∘f · ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) = ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) |
157 |
28 140 156
|
3brtr3d |
⊢ ( 𝜑 → ( ( 𝑀 Σg 𝐹 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ≤ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) |