| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqscut3.1 |
|- ( ph -> L < |
| 2 |
|
eqscut3.2 |
|- ( ph -> M < |
| 3 |
|
eqscut3.3 |
|- ( ph -> A = ( L |s R ) ) |
| 4 |
|
eqscut3.4 |
|- ( ph -> B = ( M |s S ) ) |
| 5 |
|
eqscut3.5 |
|- ( ph -> L < |
| 6 |
|
eqscut3.6 |
|- ( ph -> { B } < |
| 7 |
|
eqscut3.7 |
|- ( ph -> A. xO e. ( M u. S ) -. ( L < |
| 8 |
|
sneq |
|- ( xO = zR -> { xO } = { zR } ) |
| 9 |
8
|
breq2d |
|- ( xO = zR -> ( L < L < |
| 10 |
8
|
breq1d |
|- ( xO = zR -> ( { xO } < { zR } < |
| 11 |
9 10
|
anbi12d |
|- ( xO = zR -> ( ( L < ( L < |
| 12 |
11
|
notbid |
|- ( xO = zR -> ( -. ( L < -. ( L < |
| 13 |
7
|
adantr |
|- ( ( ph /\ zR e. S ) -> A. xO e. ( M u. S ) -. ( L < |
| 14 |
|
elun2 |
|- ( zR e. S -> zR e. ( M u. S ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ zR e. S ) -> zR e. ( M u. S ) ) |
| 16 |
12 13 15
|
rspcdva |
|- ( ( ph /\ zR e. S ) -> -. ( L < |
| 17 |
5
|
ad2antrr |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> L < |
| 18 |
4
|
sneqd |
|- ( ph -> { B } = { ( M |s S ) } ) |
| 19 |
|
scutcut |
|- ( M < ( ( M |s S ) e. No /\ M < |
| 20 |
2 19
|
syl |
|- ( ph -> ( ( M |s S ) e. No /\ M < |
| 21 |
20
|
simp3d |
|- ( ph -> { ( M |s S ) } < |
| 22 |
18 21
|
eqbrtrd |
|- ( ph -> { B } < |
| 23 |
22
|
ad2antrr |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> { B } < |
| 24 |
|
simplr |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> zR e. S ) |
| 25 |
24
|
snssd |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> { zR } C_ S ) |
| 26 |
|
sssslt2 |
|- ( ( { B } < { B } < |
| 27 |
23 25 26
|
syl2anc |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> { B } < |
| 28 |
2
|
scutcld |
|- ( ph -> ( M |s S ) e. No ) |
| 29 |
4 28
|
eqeltrd |
|- ( ph -> B e. No ) |
| 30 |
|
snnzg |
|- ( B e. No -> { B } =/= (/) ) |
| 31 |
29 30
|
syl |
|- ( ph -> { B } =/= (/) ) |
| 32 |
31
|
ad2antrr |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> { B } =/= (/) ) |
| 33 |
|
sslttr |
|- ( ( L < L < |
| 34 |
17 27 32 33
|
syl3anc |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> L < |
| 35 |
|
snex |
|- { zR } e. _V |
| 36 |
35
|
a1i |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> { zR } e. _V ) |
| 37 |
|
ssltex2 |
|- ( L < R e. _V ) |
| 38 |
1 37
|
syl |
|- ( ph -> R e. _V ) |
| 39 |
38
|
ad2antrr |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> R e. _V ) |
| 40 |
|
ssltss2 |
|- ( { B } < { zR } C_ No ) |
| 41 |
27 40
|
syl |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> { zR } C_ No ) |
| 42 |
|
ssltss2 |
|- ( L < R C_ No ) |
| 43 |
1 42
|
syl |
|- ( ph -> R C_ No ) |
| 44 |
43
|
ad2antrr |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> R C_ No ) |
| 45 |
|
simpll |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> ( ph /\ zR e. S ) ) |
| 46 |
|
ssltss2 |
|- ( M < S C_ No ) |
| 47 |
2 46
|
syl |
|- ( ph -> S C_ No ) |
| 48 |
47
|
sselda |
|- ( ( ph /\ zR e. S ) -> zR e. No ) |
| 49 |
45 48
|
syl |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> zR e. No ) |
| 50 |
|
simplll |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> ph ) |
| 51 |
1
|
scutcld |
|- ( ph -> ( L |s R ) e. No ) |
| 52 |
3 51
|
eqeltrd |
|- ( ph -> A e. No ) |
| 53 |
50 52
|
syl |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> A e. No ) |
| 54 |
44
|
sselda |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> xR e. No ) |
| 55 |
|
simplr |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> zR <_s A ) |
| 56 |
|
scutcut |
|- ( L < ( ( L |s R ) e. No /\ L < |
| 57 |
1 56
|
syl |
|- ( ph -> ( ( L |s R ) e. No /\ L < |
| 58 |
57
|
simp3d |
|- ( ph -> { ( L |s R ) } < |
| 59 |
58
|
adantr |
|- ( ( ph /\ zR e. S ) -> { ( L |s R ) } < |
| 60 |
59
|
ad2antrr |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> { ( L |s R ) } < |
| 61 |
|
ovex |
|- ( L |s R ) e. _V |
| 62 |
61
|
elsn2 |
|- ( A e. { ( L |s R ) } <-> A = ( L |s R ) ) |
| 63 |
3 62
|
sylibr |
|- ( ph -> A e. { ( L |s R ) } ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ zR e. S ) -> A e. { ( L |s R ) } ) |
| 65 |
64
|
ad2antrr |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> A e. { ( L |s R ) } ) |
| 66 |
|
simpr |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> xR e. R ) |
| 67 |
60 65 66
|
ssltsepcd |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> A |
| 68 |
49 53 54 55 67
|
slelttrd |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> zR |
| 69 |
|
velsn |
|- ( x e. { zR } <-> x = zR ) |
| 70 |
|
breq1 |
|- ( x = zR -> ( x zR |
| 71 |
69 70
|
sylbi |
|- ( x e. { zR } -> ( x zR |
| 72 |
68 71
|
syl5ibrcom |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ xR e. R ) -> ( x e. { zR } -> x |
| 73 |
72
|
ex |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> ( xR e. R -> ( x e. { zR } -> x |
| 74 |
73
|
com23 |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> ( x e. { zR } -> ( xR e. R -> x |
| 75 |
74
|
3imp |
|- ( ( ( ( ph /\ zR e. S ) /\ zR <_s A ) /\ x e. { zR } /\ xR e. R ) -> x |
| 76 |
36 39 41 44 75
|
ssltd |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> { zR } < |
| 77 |
34 76
|
jca |
|- ( ( ( ph /\ zR e. S ) /\ zR <_s A ) -> ( L < |
| 78 |
16 77
|
mtand |
|- ( ( ph /\ zR e. S ) -> -. zR <_s A ) |
| 79 |
52
|
adantr |
|- ( ( ph /\ zR e. S ) -> A e. No ) |
| 80 |
|
sltnle |
|- ( ( A e. No /\ zR e. No ) -> ( A -. zR <_s A ) ) |
| 81 |
79 48 80
|
syl2anc |
|- ( ( ph /\ zR e. S ) -> ( A -. zR <_s A ) ) |
| 82 |
78 81
|
mpbird |
|- ( ( ph /\ zR e. S ) -> A |
| 83 |
82
|
ralrimiva |
|- ( ph -> A. zR e. S A |
| 84 |
|
ssltsep |
|- ( L < A. x e. L A. y e. { B } x |
| 85 |
5 84
|
syl |
|- ( ph -> A. x e. L A. y e. { B } x |
| 86 |
|
breq2 |
|- ( y = B -> ( x x |
| 87 |
86
|
ralsng |
|- ( B e. No -> ( A. y e. { B } x x |
| 88 |
29 87
|
syl |
|- ( ph -> ( A. y e. { B } x x |
| 89 |
88
|
ralbidv |
|- ( ph -> ( A. x e. L A. y e. { B } x A. x e. L x |
| 90 |
85 89
|
mpbid |
|- ( ph -> A. x e. L x |
| 91 |
1 2 3 4
|
slerecd |
|- ( ph -> ( A <_s B <-> ( A. zR e. S A |
| 92 |
83 90 91
|
mpbir2and |
|- ( ph -> A <_s B ) |
| 93 |
|
ssltsep |
|- ( { B } < A. x e. { B } A. y e. R x |
| 94 |
6 93
|
syl |
|- ( ph -> A. x e. { B } A. y e. R x |
| 95 |
|
breq1 |
|- ( x = B -> ( x B |
| 96 |
95
|
ralbidv |
|- ( x = B -> ( A. y e. R x A. y e. R B |
| 97 |
96
|
ralsng |
|- ( B e. No -> ( A. x e. { B } A. y e. R x A. y e. R B |
| 98 |
29 97
|
syl |
|- ( ph -> ( A. x e. { B } A. y e. R x A. y e. R B |
| 99 |
94 98
|
mpbid |
|- ( ph -> A. y e. R B |
| 100 |
|
sneq |
|- ( xO = zL -> { xO } = { zL } ) |
| 101 |
100
|
breq2d |
|- ( xO = zL -> ( L < L < |
| 102 |
100
|
breq1d |
|- ( xO = zL -> ( { xO } < { zL } < |
| 103 |
101 102
|
anbi12d |
|- ( xO = zL -> ( ( L < ( L < |
| 104 |
103
|
notbid |
|- ( xO = zL -> ( -. ( L < -. ( L < |
| 105 |
7
|
adantr |
|- ( ( ph /\ zL e. M ) -> A. xO e. ( M u. S ) -. ( L < |
| 106 |
|
elun1 |
|- ( zL e. M -> zL e. ( M u. S ) ) |
| 107 |
106
|
adantl |
|- ( ( ph /\ zL e. M ) -> zL e. ( M u. S ) ) |
| 108 |
104 105 107
|
rspcdva |
|- ( ( ph /\ zL e. M ) -> -. ( L < |
| 109 |
|
ssltex1 |
|- ( L < L e. _V ) |
| 110 |
1 109
|
syl |
|- ( ph -> L e. _V ) |
| 111 |
110
|
ad2antrr |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> L e. _V ) |
| 112 |
|
snex |
|- { zL } e. _V |
| 113 |
112
|
a1i |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> { zL } e. _V ) |
| 114 |
|
ssltss1 |
|- ( L < L C_ No ) |
| 115 |
1 114
|
syl |
|- ( ph -> L C_ No ) |
| 116 |
115
|
adantr |
|- ( ( ph /\ zL e. M ) -> L C_ No ) |
| 117 |
116
|
adantr |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> L C_ No ) |
| 118 |
|
simplr |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> zL e. M ) |
| 119 |
118
|
snssd |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> { zL } C_ M ) |
| 120 |
|
ssltss1 |
|- ( M < M C_ No ) |
| 121 |
2 120
|
syl |
|- ( ph -> M C_ No ) |
| 122 |
121
|
ad2antrr |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> M C_ No ) |
| 123 |
119 122
|
sstrd |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> { zL } C_ No ) |
| 124 |
117
|
sselda |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> xL e. No ) |
| 125 |
|
simplll |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> ph ) |
| 126 |
125 52
|
syl |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> A e. No ) |
| 127 |
121
|
sselda |
|- ( ( ph /\ zL e. M ) -> zL e. No ) |
| 128 |
127
|
adantr |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> zL e. No ) |
| 129 |
128
|
adantr |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> zL e. No ) |
| 130 |
57
|
simp2d |
|- ( ph -> L < |
| 131 |
130
|
adantr |
|- ( ( ph /\ zL e. M ) -> L < |
| 132 |
131
|
adantr |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> L < |
| 133 |
132
|
adantr |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> L < |
| 134 |
|
simpr |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> xL e. L ) |
| 135 |
63
|
adantr |
|- ( ( ph /\ zL e. M ) -> A e. { ( L |s R ) } ) |
| 136 |
135
|
adantr |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> A e. { ( L |s R ) } ) |
| 137 |
136
|
adantr |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> A e. { ( L |s R ) } ) |
| 138 |
133 134 137
|
ssltsepcd |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> xL |
| 139 |
|
simplr |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> A <_s zL ) |
| 140 |
124 126 129 138 139
|
sltletrd |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> xL |
| 141 |
|
velsn |
|- ( x e. { zL } <-> x = zL ) |
| 142 |
|
breq2 |
|- ( x = zL -> ( xL xL |
| 143 |
141 142
|
sylbi |
|- ( x e. { zL } -> ( xL xL |
| 144 |
140 143
|
syl5ibrcom |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L ) -> ( x e. { zL } -> xL |
| 145 |
144
|
3impia |
|- ( ( ( ( ph /\ zL e. M ) /\ A <_s zL ) /\ xL e. L /\ x e. { zL } ) -> xL |
| 146 |
111 113 117 123 145
|
ssltd |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> L < |
| 147 |
20
|
simp2d |
|- ( ph -> M < |
| 148 |
147 18
|
breqtrrd |
|- ( ph -> M < |
| 149 |
148
|
adantr |
|- ( ( ph /\ zL e. M ) -> M < |
| 150 |
149
|
adantr |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> M < |
| 151 |
|
sssslt1 |
|- ( ( M < { zL } < |
| 152 |
150 119 151
|
syl2anc |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> { zL } < |
| 153 |
|
simpll |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> ph ) |
| 154 |
153 6
|
syl |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> { B } < |
| 155 |
31
|
adantr |
|- ( ( ph /\ zL e. M ) -> { B } =/= (/) ) |
| 156 |
155
|
adantr |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> { B } =/= (/) ) |
| 157 |
|
sslttr |
|- ( ( { zL } < { zL } < |
| 158 |
152 154 156 157
|
syl3anc |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> { zL } < |
| 159 |
146 158
|
jca |
|- ( ( ( ph /\ zL e. M ) /\ A <_s zL ) -> ( L < |
| 160 |
108 159
|
mtand |
|- ( ( ph /\ zL e. M ) -> -. A <_s zL ) |
| 161 |
52
|
adantr |
|- ( ( ph /\ zL e. M ) -> A e. No ) |
| 162 |
|
sltnle |
|- ( ( zL e. No /\ A e. No ) -> ( zL -. A <_s zL ) ) |
| 163 |
127 161 162
|
syl2anc |
|- ( ( ph /\ zL e. M ) -> ( zL -. A <_s zL ) ) |
| 164 |
160 163
|
mpbird |
|- ( ( ph /\ zL e. M ) -> zL |
| 165 |
164
|
ralrimiva |
|- ( ph -> A. zL e. M zL |
| 166 |
2 1 4 3
|
slerecd |
|- ( ph -> ( B <_s A <-> ( A. y e. R B |
| 167 |
99 165 166
|
mpbir2and |
|- ( ph -> B <_s A ) |
| 168 |
|
sletri3 |
|- ( ( A e. No /\ B e. No ) -> ( A = B <-> ( A <_s B /\ B <_s A ) ) ) |
| 169 |
52 29 168
|
syl2anc |
|- ( ph -> ( A = B <-> ( A <_s B /\ B <_s A ) ) ) |
| 170 |
92 167 169
|
mpbir2and |
|- ( ph -> A = B ) |