| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqscut3.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
| 2 |
|
eqscut3.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
| 3 |
|
eqscut3.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 4 |
|
eqscut3.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
| 5 |
|
eqscut3.5 |
⊢ ( 𝜑 → 𝐿 <<s { 𝐵 } ) |
| 6 |
|
eqscut3.6 |
⊢ ( 𝜑 → { 𝐵 } <<s 𝑅 ) |
| 7 |
|
eqscut3.7 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( 𝑀 ∪ 𝑆 ) ¬ ( 𝐿 <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s 𝑅 ) ) |
| 8 |
|
sneq |
⊢ ( 𝑥𝑂 = 𝑧𝑅 → { 𝑥𝑂 } = { 𝑧𝑅 } ) |
| 9 |
8
|
breq2d |
⊢ ( 𝑥𝑂 = 𝑧𝑅 → ( 𝐿 <<s { 𝑥𝑂 } ↔ 𝐿 <<s { 𝑧𝑅 } ) ) |
| 10 |
8
|
breq1d |
⊢ ( 𝑥𝑂 = 𝑧𝑅 → ( { 𝑥𝑂 } <<s 𝑅 ↔ { 𝑧𝑅 } <<s 𝑅 ) ) |
| 11 |
9 10
|
anbi12d |
⊢ ( 𝑥𝑂 = 𝑧𝑅 → ( ( 𝐿 <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s 𝑅 ) ↔ ( 𝐿 <<s { 𝑧𝑅 } ∧ { 𝑧𝑅 } <<s 𝑅 ) ) ) |
| 12 |
11
|
notbid |
⊢ ( 𝑥𝑂 = 𝑧𝑅 → ( ¬ ( 𝐿 <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s 𝑅 ) ↔ ¬ ( 𝐿 <<s { 𝑧𝑅 } ∧ { 𝑧𝑅 } <<s 𝑅 ) ) ) |
| 13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) → ∀ 𝑥𝑂 ∈ ( 𝑀 ∪ 𝑆 ) ¬ ( 𝐿 <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s 𝑅 ) ) |
| 14 |
|
elun2 |
⊢ ( 𝑧𝑅 ∈ 𝑆 → 𝑧𝑅 ∈ ( 𝑀 ∪ 𝑆 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) → 𝑧𝑅 ∈ ( 𝑀 ∪ 𝑆 ) ) |
| 16 |
12 13 15
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) → ¬ ( 𝐿 <<s { 𝑧𝑅 } ∧ { 𝑧𝑅 } <<s 𝑅 ) ) |
| 17 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → 𝐿 <<s { 𝐵 } ) |
| 18 |
4
|
sneqd |
⊢ ( 𝜑 → { 𝐵 } = { ( 𝑀 |s 𝑆 ) } ) |
| 19 |
|
scutcut |
⊢ ( 𝑀 <<s 𝑆 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 20 |
2 19
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 21 |
20
|
simp3d |
⊢ ( 𝜑 → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
| 22 |
18 21
|
eqbrtrd |
⊢ ( 𝜑 → { 𝐵 } <<s 𝑆 ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → { 𝐵 } <<s 𝑆 ) |
| 24 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → 𝑧𝑅 ∈ 𝑆 ) |
| 25 |
24
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → { 𝑧𝑅 } ⊆ 𝑆 ) |
| 26 |
|
sssslt2 |
⊢ ( ( { 𝐵 } <<s 𝑆 ∧ { 𝑧𝑅 } ⊆ 𝑆 ) → { 𝐵 } <<s { 𝑧𝑅 } ) |
| 27 |
23 25 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → { 𝐵 } <<s { 𝑧𝑅 } ) |
| 28 |
2
|
scutcld |
⊢ ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No ) |
| 29 |
4 28
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 30 |
|
snnzg |
⊢ ( 𝐵 ∈ No → { 𝐵 } ≠ ∅ ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → { 𝐵 } ≠ ∅ ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → { 𝐵 } ≠ ∅ ) |
| 33 |
|
sslttr |
⊢ ( ( 𝐿 <<s { 𝐵 } ∧ { 𝐵 } <<s { 𝑧𝑅 } ∧ { 𝐵 } ≠ ∅ ) → 𝐿 <<s { 𝑧𝑅 } ) |
| 34 |
17 27 32 33
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → 𝐿 <<s { 𝑧𝑅 } ) |
| 35 |
|
snex |
⊢ { 𝑧𝑅 } ∈ V |
| 36 |
35
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → { 𝑧𝑅 } ∈ V ) |
| 37 |
|
ssltex2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ∈ V ) |
| 38 |
1 37
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → 𝑅 ∈ V ) |
| 40 |
|
ssltss2 |
⊢ ( { 𝐵 } <<s { 𝑧𝑅 } → { 𝑧𝑅 } ⊆ No ) |
| 41 |
27 40
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → { 𝑧𝑅 } ⊆ No ) |
| 42 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
| 43 |
1 42
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → 𝑅 ⊆ No ) |
| 45 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ) |
| 46 |
|
ssltss2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ⊆ No ) |
| 47 |
2 46
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ No ) |
| 48 |
47
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) → 𝑧𝑅 ∈ No ) |
| 49 |
45 48
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → 𝑧𝑅 ∈ No ) |
| 50 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → 𝜑 ) |
| 51 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
| 52 |
3 51
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 53 |
50 52
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → 𝐴 ∈ No ) |
| 54 |
44
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → 𝑥𝑅 ∈ No ) |
| 55 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → 𝑧𝑅 ≤s 𝐴 ) |
| 56 |
|
scutcut |
⊢ ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 57 |
1 56
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 58 |
57
|
simp3d |
⊢ ( 𝜑 → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
| 60 |
59
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
| 61 |
|
ovex |
⊢ ( 𝐿 |s 𝑅 ) ∈ V |
| 62 |
61
|
elsn2 |
⊢ ( 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ↔ 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 63 |
3 62
|
sylibr |
⊢ ( 𝜑 → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 65 |
64
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 66 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → 𝑥𝑅 ∈ 𝑅 ) |
| 67 |
60 65 66
|
ssltsepcd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → 𝐴 <s 𝑥𝑅 ) |
| 68 |
49 53 54 55 67
|
slelttrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → 𝑧𝑅 <s 𝑥𝑅 ) |
| 69 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑧𝑅 } ↔ 𝑥 = 𝑧𝑅 ) |
| 70 |
|
breq1 |
⊢ ( 𝑥 = 𝑧𝑅 → ( 𝑥 <s 𝑥𝑅 ↔ 𝑧𝑅 <s 𝑥𝑅 ) ) |
| 71 |
69 70
|
sylbi |
⊢ ( 𝑥 ∈ { 𝑧𝑅 } → ( 𝑥 <s 𝑥𝑅 ↔ 𝑧𝑅 <s 𝑥𝑅 ) ) |
| 72 |
68 71
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥𝑅 ∈ 𝑅 ) → ( 𝑥 ∈ { 𝑧𝑅 } → 𝑥 <s 𝑥𝑅 ) ) |
| 73 |
72
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → ( 𝑥𝑅 ∈ 𝑅 → ( 𝑥 ∈ { 𝑧𝑅 } → 𝑥 <s 𝑥𝑅 ) ) ) |
| 74 |
73
|
com23 |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → ( 𝑥 ∈ { 𝑧𝑅 } → ( 𝑥𝑅 ∈ 𝑅 → 𝑥 <s 𝑥𝑅 ) ) ) |
| 75 |
74
|
3imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) ∧ 𝑥 ∈ { 𝑧𝑅 } ∧ 𝑥𝑅 ∈ 𝑅 ) → 𝑥 <s 𝑥𝑅 ) |
| 76 |
36 39 41 44 75
|
ssltd |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → { 𝑧𝑅 } <<s 𝑅 ) |
| 77 |
34 76
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) ∧ 𝑧𝑅 ≤s 𝐴 ) → ( 𝐿 <<s { 𝑧𝑅 } ∧ { 𝑧𝑅 } <<s 𝑅 ) ) |
| 78 |
16 77
|
mtand |
⊢ ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) → ¬ 𝑧𝑅 ≤s 𝐴 ) |
| 79 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) → 𝐴 ∈ No ) |
| 80 |
|
sltnle |
⊢ ( ( 𝐴 ∈ No ∧ 𝑧𝑅 ∈ No ) → ( 𝐴 <s 𝑧𝑅 ↔ ¬ 𝑧𝑅 ≤s 𝐴 ) ) |
| 81 |
79 48 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) → ( 𝐴 <s 𝑧𝑅 ↔ ¬ 𝑧𝑅 ≤s 𝐴 ) ) |
| 82 |
78 81
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧𝑅 ∈ 𝑆 ) → 𝐴 <s 𝑧𝑅 ) |
| 83 |
82
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧𝑅 ∈ 𝑆 𝐴 <s 𝑧𝑅 ) |
| 84 |
|
ssltsep |
⊢ ( 𝐿 <<s { 𝐵 } → ∀ 𝑥 ∈ 𝐿 ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) |
| 85 |
5 84
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐿 ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) |
| 86 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 <s 𝑦 ↔ 𝑥 <s 𝐵 ) ) |
| 87 |
86
|
ralsng |
⊢ ( 𝐵 ∈ No → ( ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ 𝑥 <s 𝐵 ) ) |
| 88 |
29 87
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ 𝑥 <s 𝐵 ) ) |
| 89 |
88
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐿 ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ ∀ 𝑥 ∈ 𝐿 𝑥 <s 𝐵 ) ) |
| 90 |
85 89
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐿 𝑥 <s 𝐵 ) |
| 91 |
1 2 3 4
|
slerecd |
⊢ ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( ∀ 𝑧𝑅 ∈ 𝑆 𝐴 <s 𝑧𝑅 ∧ ∀ 𝑥 ∈ 𝐿 𝑥 <s 𝐵 ) ) ) |
| 92 |
83 90 91
|
mpbir2and |
⊢ ( 𝜑 → 𝐴 ≤s 𝐵 ) |
| 93 |
|
ssltsep |
⊢ ( { 𝐵 } <<s 𝑅 → ∀ 𝑥 ∈ { 𝐵 } ∀ 𝑦 ∈ 𝑅 𝑥 <s 𝑦 ) |
| 94 |
6 93
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝐵 } ∀ 𝑦 ∈ 𝑅 𝑥 <s 𝑦 ) |
| 95 |
|
breq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 <s 𝑦 ↔ 𝐵 <s 𝑦 ) ) |
| 96 |
95
|
ralbidv |
⊢ ( 𝑥 = 𝐵 → ( ∀ 𝑦 ∈ 𝑅 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ 𝑅 𝐵 <s 𝑦 ) ) |
| 97 |
96
|
ralsng |
⊢ ( 𝐵 ∈ No → ( ∀ 𝑥 ∈ { 𝐵 } ∀ 𝑦 ∈ 𝑅 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ 𝑅 𝐵 <s 𝑦 ) ) |
| 98 |
29 97
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐵 } ∀ 𝑦 ∈ 𝑅 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ 𝑅 𝐵 <s 𝑦 ) ) |
| 99 |
94 98
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑅 𝐵 <s 𝑦 ) |
| 100 |
|
sneq |
⊢ ( 𝑥𝑂 = 𝑧𝐿 → { 𝑥𝑂 } = { 𝑧𝐿 } ) |
| 101 |
100
|
breq2d |
⊢ ( 𝑥𝑂 = 𝑧𝐿 → ( 𝐿 <<s { 𝑥𝑂 } ↔ 𝐿 <<s { 𝑧𝐿 } ) ) |
| 102 |
100
|
breq1d |
⊢ ( 𝑥𝑂 = 𝑧𝐿 → ( { 𝑥𝑂 } <<s 𝑅 ↔ { 𝑧𝐿 } <<s 𝑅 ) ) |
| 103 |
101 102
|
anbi12d |
⊢ ( 𝑥𝑂 = 𝑧𝐿 → ( ( 𝐿 <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s 𝑅 ) ↔ ( 𝐿 <<s { 𝑧𝐿 } ∧ { 𝑧𝐿 } <<s 𝑅 ) ) ) |
| 104 |
103
|
notbid |
⊢ ( 𝑥𝑂 = 𝑧𝐿 → ( ¬ ( 𝐿 <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s 𝑅 ) ↔ ¬ ( 𝐿 <<s { 𝑧𝐿 } ∧ { 𝑧𝐿 } <<s 𝑅 ) ) ) |
| 105 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → ∀ 𝑥𝑂 ∈ ( 𝑀 ∪ 𝑆 ) ¬ ( 𝐿 <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s 𝑅 ) ) |
| 106 |
|
elun1 |
⊢ ( 𝑧𝐿 ∈ 𝑀 → 𝑧𝐿 ∈ ( 𝑀 ∪ 𝑆 ) ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → 𝑧𝐿 ∈ ( 𝑀 ∪ 𝑆 ) ) |
| 108 |
104 105 107
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → ¬ ( 𝐿 <<s { 𝑧𝐿 } ∧ { 𝑧𝐿 } <<s 𝑅 ) ) |
| 109 |
|
ssltex1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ∈ V ) |
| 110 |
1 109
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
| 111 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → 𝐿 ∈ V ) |
| 112 |
|
snex |
⊢ { 𝑧𝐿 } ∈ V |
| 113 |
112
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → { 𝑧𝐿 } ∈ V ) |
| 114 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
| 115 |
1 114
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
| 116 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → 𝐿 ⊆ No ) |
| 117 |
116
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → 𝐿 ⊆ No ) |
| 118 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → 𝑧𝐿 ∈ 𝑀 ) |
| 119 |
118
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → { 𝑧𝐿 } ⊆ 𝑀 ) |
| 120 |
|
ssltss1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ⊆ No ) |
| 121 |
2 120
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ No ) |
| 122 |
121
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → 𝑀 ⊆ No ) |
| 123 |
119 122
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → { 𝑧𝐿 } ⊆ No ) |
| 124 |
117
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → 𝑥𝐿 ∈ No ) |
| 125 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → 𝜑 ) |
| 126 |
125 52
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → 𝐴 ∈ No ) |
| 127 |
121
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → 𝑧𝐿 ∈ No ) |
| 128 |
127
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → 𝑧𝐿 ∈ No ) |
| 129 |
128
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → 𝑧𝐿 ∈ No ) |
| 130 |
57
|
simp2d |
⊢ ( 𝜑 → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 132 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 133 |
132
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 134 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → 𝑥𝐿 ∈ 𝐿 ) |
| 135 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 136 |
135
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 137 |
136
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 138 |
133 134 137
|
ssltsepcd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → 𝑥𝐿 <s 𝐴 ) |
| 139 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → 𝐴 ≤s 𝑧𝐿 ) |
| 140 |
124 126 129 138 139
|
sltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → 𝑥𝐿 <s 𝑧𝐿 ) |
| 141 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑧𝐿 } ↔ 𝑥 = 𝑧𝐿 ) |
| 142 |
|
breq2 |
⊢ ( 𝑥 = 𝑧𝐿 → ( 𝑥𝐿 <s 𝑥 ↔ 𝑥𝐿 <s 𝑧𝐿 ) ) |
| 143 |
141 142
|
sylbi |
⊢ ( 𝑥 ∈ { 𝑧𝐿 } → ( 𝑥𝐿 <s 𝑥 ↔ 𝑥𝐿 <s 𝑧𝐿 ) ) |
| 144 |
140 143
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ) → ( 𝑥 ∈ { 𝑧𝐿 } → 𝑥𝐿 <s 𝑥 ) ) |
| 145 |
144
|
3impia |
⊢ ( ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) ∧ 𝑥𝐿 ∈ 𝐿 ∧ 𝑥 ∈ { 𝑧𝐿 } ) → 𝑥𝐿 <s 𝑥 ) |
| 146 |
111 113 117 123 145
|
ssltd |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → 𝐿 <<s { 𝑧𝐿 } ) |
| 147 |
20
|
simp2d |
⊢ ( 𝜑 → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
| 148 |
147 18
|
breqtrrd |
⊢ ( 𝜑 → 𝑀 <<s { 𝐵 } ) |
| 149 |
148
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → 𝑀 <<s { 𝐵 } ) |
| 150 |
149
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → 𝑀 <<s { 𝐵 } ) |
| 151 |
|
sssslt1 |
⊢ ( ( 𝑀 <<s { 𝐵 } ∧ { 𝑧𝐿 } ⊆ 𝑀 ) → { 𝑧𝐿 } <<s { 𝐵 } ) |
| 152 |
150 119 151
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → { 𝑧𝐿 } <<s { 𝐵 } ) |
| 153 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → 𝜑 ) |
| 154 |
153 6
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → { 𝐵 } <<s 𝑅 ) |
| 155 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → { 𝐵 } ≠ ∅ ) |
| 156 |
155
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → { 𝐵 } ≠ ∅ ) |
| 157 |
|
sslttr |
⊢ ( ( { 𝑧𝐿 } <<s { 𝐵 } ∧ { 𝐵 } <<s 𝑅 ∧ { 𝐵 } ≠ ∅ ) → { 𝑧𝐿 } <<s 𝑅 ) |
| 158 |
152 154 156 157
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → { 𝑧𝐿 } <<s 𝑅 ) |
| 159 |
146 158
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) ∧ 𝐴 ≤s 𝑧𝐿 ) → ( 𝐿 <<s { 𝑧𝐿 } ∧ { 𝑧𝐿 } <<s 𝑅 ) ) |
| 160 |
108 159
|
mtand |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → ¬ 𝐴 ≤s 𝑧𝐿 ) |
| 161 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → 𝐴 ∈ No ) |
| 162 |
|
sltnle |
⊢ ( ( 𝑧𝐿 ∈ No ∧ 𝐴 ∈ No ) → ( 𝑧𝐿 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝑧𝐿 ) ) |
| 163 |
127 161 162
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → ( 𝑧𝐿 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝑧𝐿 ) ) |
| 164 |
160 163
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧𝐿 ∈ 𝑀 ) → 𝑧𝐿 <s 𝐴 ) |
| 165 |
164
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧𝐿 ∈ 𝑀 𝑧𝐿 <s 𝐴 ) |
| 166 |
2 1 4 3
|
slerecd |
⊢ ( 𝜑 → ( 𝐵 ≤s 𝐴 ↔ ( ∀ 𝑦 ∈ 𝑅 𝐵 <s 𝑦 ∧ ∀ 𝑧𝐿 ∈ 𝑀 𝑧𝐿 <s 𝐴 ) ) ) |
| 167 |
99 165 166
|
mpbir2and |
⊢ ( 𝜑 → 𝐵 ≤s 𝐴 ) |
| 168 |
|
sletri3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ) ) |
| 169 |
52 29 168
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ) ) |
| 170 |
92 167 169
|
mpbir2and |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |