| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icchmeoOLD.j |
|- J = ( TopOpen ` CCfld ) |
| 2 |
|
icchmeoOLD.f |
|- F = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
| 3 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 4 |
3
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 5 |
1
|
dfii3 |
|- II = ( J |`t ( 0 [,] 1 ) ) |
| 6 |
5
|
oveq2i |
|- ( II Cn II ) = ( II Cn ( J |`t ( 0 [,] 1 ) ) ) |
| 7 |
1
|
cnfldtop |
|- J e. Top |
| 8 |
|
cnrest2r |
|- ( J e. Top -> ( II Cn ( J |`t ( 0 [,] 1 ) ) ) C_ ( II Cn J ) ) |
| 9 |
7 8
|
ax-mp |
|- ( II Cn ( J |`t ( 0 [,] 1 ) ) ) C_ ( II Cn J ) |
| 10 |
6 9
|
eqsstri |
|- ( II Cn II ) C_ ( II Cn J ) |
| 11 |
4
|
cnmptid |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> x ) e. ( II Cn II ) ) |
| 12 |
10 11
|
sselid |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> x ) e. ( II Cn J ) ) |
| 13 |
1
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
| 14 |
13
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> J e. ( TopOn ` CC ) ) |
| 15 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR ) |
| 16 |
15
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. CC ) |
| 17 |
4 14 16
|
cnmptc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> B ) e. ( II Cn J ) ) |
| 18 |
1
|
mulcn |
|- x. e. ( ( J tX J ) Cn J ) |
| 19 |
18
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> x. e. ( ( J tX J ) Cn J ) ) |
| 20 |
4 12 17 19
|
cnmpt12f |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( x x. B ) ) e. ( II Cn J ) ) |
| 21 |
|
1cnd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> 1 e. CC ) |
| 22 |
4 14 21
|
cnmptc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> 1 ) e. ( II Cn J ) ) |
| 23 |
1
|
subcn |
|- - e. ( ( J tX J ) Cn J ) |
| 24 |
23
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> - e. ( ( J tX J ) Cn J ) ) |
| 25 |
4 22 12 24
|
cnmpt12f |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( 1 - x ) ) e. ( II Cn J ) ) |
| 26 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR ) |
| 27 |
26
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. CC ) |
| 28 |
4 14 27
|
cnmptc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> A ) e. ( II Cn J ) ) |
| 29 |
4 25 28 19
|
cnmpt12f |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( ( 1 - x ) x. A ) ) e. ( II Cn J ) ) |
| 30 |
1
|
addcn |
|- + e. ( ( J tX J ) Cn J ) |
| 31 |
30
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> + e. ( ( J tX J ) Cn J ) ) |
| 32 |
4 20 29 31
|
cnmpt12f |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) e. ( II Cn J ) ) |
| 33 |
2 32
|
eqeltrid |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Cn J ) ) |
| 34 |
2
|
iccf1o |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) ) |
| 35 |
34
|
simpld |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) ) |
| 36 |
|
f1of |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) -> F : ( 0 [,] 1 ) --> ( A [,] B ) ) |
| 37 |
|
frn |
|- ( F : ( 0 [,] 1 ) --> ( A [,] B ) -> ran F C_ ( A [,] B ) ) |
| 38 |
35 36 37
|
3syl |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ran F C_ ( A [,] B ) ) |
| 39 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 40 |
39
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A [,] B ) C_ RR ) |
| 41 |
|
ax-resscn |
|- RR C_ CC |
| 42 |
40 41
|
sstrdi |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A [,] B ) C_ CC ) |
| 43 |
|
cnrest2 |
|- ( ( J e. ( TopOn ` CC ) /\ ran F C_ ( A [,] B ) /\ ( A [,] B ) C_ CC ) -> ( F e. ( II Cn J ) <-> F e. ( II Cn ( J |`t ( A [,] B ) ) ) ) ) |
| 44 |
13 38 42 43
|
mp3an2i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F e. ( II Cn J ) <-> F e. ( II Cn ( J |`t ( A [,] B ) ) ) ) ) |
| 45 |
33 44
|
mpbid |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Cn ( J |`t ( A [,] B ) ) ) ) |
| 46 |
34
|
simprd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) |
| 47 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ ( A [,] B ) C_ CC ) -> ( J |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
| 48 |
13 42 47
|
sylancr |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( J |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
| 49 |
|
cnrest2r |
|- ( J e. Top -> ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( A [,] B ) ) ) C_ ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 50 |
7 49
|
ax-mp |
|- ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( A [,] B ) ) ) C_ ( ( J |`t ( A [,] B ) ) Cn J ) |
| 51 |
48
|
cnmptid |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> y ) e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( A [,] B ) ) ) ) |
| 52 |
50 51
|
sselid |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> y ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 53 |
48 14 27
|
cnmptc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> A ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 54 |
48 52 53 24
|
cnmpt12f |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> ( y - A ) ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 55 |
|
difrp |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |
| 56 |
55
|
biimp3a |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. RR+ ) |
| 57 |
56
|
rpcnd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. CC ) |
| 58 |
56
|
rpne0d |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) =/= 0 ) |
| 59 |
1
|
divccn |
|- ( ( ( B - A ) e. CC /\ ( B - A ) =/= 0 ) -> ( x e. CC |-> ( x / ( B - A ) ) ) e. ( J Cn J ) ) |
| 60 |
57 58 59
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. CC |-> ( x / ( B - A ) ) ) e. ( J Cn J ) ) |
| 61 |
|
oveq1 |
|- ( x = ( y - A ) -> ( x / ( B - A ) ) = ( ( y - A ) / ( B - A ) ) ) |
| 62 |
48 54 14 60 61
|
cnmpt11 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 63 |
46 62
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 64 |
|
dfdm4 |
|- dom F = ran `' F |
| 65 |
64
|
eqimss2i |
|- ran `' F C_ dom F |
| 66 |
|
f1odm |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) -> dom F = ( 0 [,] 1 ) ) |
| 67 |
35 66
|
syl |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> dom F = ( 0 [,] 1 ) ) |
| 68 |
65 67
|
sseqtrid |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ran `' F C_ ( 0 [,] 1 ) ) |
| 69 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 70 |
69
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( 0 [,] 1 ) C_ RR ) |
| 71 |
70 41
|
sstrdi |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( 0 [,] 1 ) C_ CC ) |
| 72 |
|
cnrest2 |
|- ( ( J e. ( TopOn ` CC ) /\ ran `' F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ CC ) -> ( `' F e. ( ( J |`t ( A [,] B ) ) Cn J ) <-> `' F e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) ) ) |
| 73 |
13 68 71 72
|
mp3an2i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( `' F e. ( ( J |`t ( A [,] B ) ) Cn J ) <-> `' F e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) ) ) |
| 74 |
63 73
|
mpbid |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) ) |
| 75 |
5
|
oveq2i |
|- ( ( J |`t ( A [,] B ) ) Cn II ) = ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) |
| 76 |
74 75
|
eleqtrrdi |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F e. ( ( J |`t ( A [,] B ) ) Cn II ) ) |
| 77 |
|
ishmeo |
|- ( F e. ( II Homeo ( J |`t ( A [,] B ) ) ) <-> ( F e. ( II Cn ( J |`t ( A [,] B ) ) ) /\ `' F e. ( ( J |`t ( A [,] B ) ) Cn II ) ) ) |
| 78 |
45 76 77
|
sylanbrc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Homeo ( J |`t ( A [,] B ) ) ) ) |