Step |
Hyp |
Ref |
Expression |
1 |
|
itg2add.f1 |
|- ( ph -> F e. MblFn ) |
2 |
|
itg2add.f2 |
|- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
3 |
|
itg2add.f3 |
|- ( ph -> ( S.2 ` F ) e. RR ) |
4 |
|
itg2add.g1 |
|- ( ph -> G e. MblFn ) |
5 |
|
itg2add.g2 |
|- ( ph -> G : RR --> ( 0 [,) +oo ) ) |
6 |
|
itg2add.g3 |
|- ( ph -> ( S.2 ` G ) e. RR ) |
7 |
|
itg2add.p1 |
|- ( ph -> P : NN --> dom S.1 ) |
8 |
|
itg2add.p2 |
|- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
9 |
|
itg2add.p3 |
|- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
10 |
|
itg2add.q1 |
|- ( ph -> Q : NN --> dom S.1 ) |
11 |
|
itg2add.q2 |
|- ( ph -> A. n e. NN ( 0p oR <_ ( Q ` n ) /\ ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) ) ) |
12 |
|
itg2add.q3 |
|- ( ph -> A. x e. RR ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) ) |
13 |
1 4
|
mbfadd |
|- ( ph -> ( F oF + G ) e. MblFn ) |
14 |
|
ge0addcl |
|- ( ( y e. ( 0 [,) +oo ) /\ z e. ( 0 [,) +oo ) ) -> ( y + z ) e. ( 0 [,) +oo ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ ( y e. ( 0 [,) +oo ) /\ z e. ( 0 [,) +oo ) ) ) -> ( y + z ) e. ( 0 [,) +oo ) ) |
16 |
|
reex |
|- RR e. _V |
17 |
16
|
a1i |
|- ( ph -> RR e. _V ) |
18 |
|
inidm |
|- ( RR i^i RR ) = RR |
19 |
15 2 5 17 17 18
|
off |
|- ( ph -> ( F oF + G ) : RR --> ( 0 [,) +oo ) ) |
20 |
|
simpl |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> f e. dom S.1 ) |
21 |
|
simpr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> g e. dom S.1 ) |
22 |
20 21
|
i1fadd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( f oF + g ) e. dom S.1 ) |
23 |
22
|
adantl |
|- ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( f oF + g ) e. dom S.1 ) |
24 |
|
nnex |
|- NN e. _V |
25 |
24
|
a1i |
|- ( ph -> NN e. _V ) |
26 |
|
inidm |
|- ( NN i^i NN ) = NN |
27 |
23 7 10 25 25 26
|
off |
|- ( ph -> ( P oF oF + Q ) : NN --> dom S.1 ) |
28 |
|
ge0addcl |
|- ( ( f e. ( 0 [,) +oo ) /\ g e. ( 0 [,) +oo ) ) -> ( f + g ) e. ( 0 [,) +oo ) ) |
29 |
28
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ ( f e. ( 0 [,) +oo ) /\ g e. ( 0 [,) +oo ) ) ) -> ( f + g ) e. ( 0 [,) +oo ) ) |
30 |
7
|
ffvelrnda |
|- ( ( ph /\ m e. NN ) -> ( P ` m ) e. dom S.1 ) |
31 |
|
fveq2 |
|- ( n = m -> ( P ` n ) = ( P ` m ) ) |
32 |
31
|
breq2d |
|- ( n = m -> ( 0p oR <_ ( P ` n ) <-> 0p oR <_ ( P ` m ) ) ) |
33 |
|
fvoveq1 |
|- ( n = m -> ( P ` ( n + 1 ) ) = ( P ` ( m + 1 ) ) ) |
34 |
31 33
|
breq12d |
|- ( n = m -> ( ( P ` n ) oR <_ ( P ` ( n + 1 ) ) <-> ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) |
35 |
32 34
|
anbi12d |
|- ( n = m -> ( ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) <-> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) ) |
36 |
35
|
rspccva |
|- ( ( A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) /\ m e. NN ) -> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) |
37 |
8 36
|
sylan |
|- ( ( ph /\ m e. NN ) -> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) |
38 |
37
|
simpld |
|- ( ( ph /\ m e. NN ) -> 0p oR <_ ( P ` m ) ) |
39 |
|
breq2 |
|- ( f = ( P ` m ) -> ( 0p oR <_ f <-> 0p oR <_ ( P ` m ) ) ) |
40 |
|
feq1 |
|- ( f = ( P ` m ) -> ( f : RR --> ( 0 [,) +oo ) <-> ( P ` m ) : RR --> ( 0 [,) +oo ) ) ) |
41 |
39 40
|
imbi12d |
|- ( f = ( P ` m ) -> ( ( 0p oR <_ f -> f : RR --> ( 0 [,) +oo ) ) <-> ( 0p oR <_ ( P ` m ) -> ( P ` m ) : RR --> ( 0 [,) +oo ) ) ) ) |
42 |
|
i1ff |
|- ( f e. dom S.1 -> f : RR --> RR ) |
43 |
42
|
ffnd |
|- ( f e. dom S.1 -> f Fn RR ) |
44 |
43
|
adantr |
|- ( ( f e. dom S.1 /\ 0p oR <_ f ) -> f Fn RR ) |
45 |
|
0cn |
|- 0 e. CC |
46 |
|
fnconstg |
|- ( 0 e. CC -> ( CC X. { 0 } ) Fn CC ) |
47 |
45 46
|
ax-mp |
|- ( CC X. { 0 } ) Fn CC |
48 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
49 |
48
|
fneq1i |
|- ( 0p Fn CC <-> ( CC X. { 0 } ) Fn CC ) |
50 |
47 49
|
mpbir |
|- 0p Fn CC |
51 |
50
|
a1i |
|- ( f e. dom S.1 -> 0p Fn CC ) |
52 |
|
cnex |
|- CC e. _V |
53 |
52
|
a1i |
|- ( f e. dom S.1 -> CC e. _V ) |
54 |
16
|
a1i |
|- ( f e. dom S.1 -> RR e. _V ) |
55 |
|
ax-resscn |
|- RR C_ CC |
56 |
|
sseqin2 |
|- ( RR C_ CC <-> ( CC i^i RR ) = RR ) |
57 |
55 56
|
mpbi |
|- ( CC i^i RR ) = RR |
58 |
|
0pval |
|- ( x e. CC -> ( 0p ` x ) = 0 ) |
59 |
58
|
adantl |
|- ( ( f e. dom S.1 /\ x e. CC ) -> ( 0p ` x ) = 0 ) |
60 |
|
eqidd |
|- ( ( f e. dom S.1 /\ x e. RR ) -> ( f ` x ) = ( f ` x ) ) |
61 |
51 43 53 54 57 59 60
|
ofrfval |
|- ( f e. dom S.1 -> ( 0p oR <_ f <-> A. x e. RR 0 <_ ( f ` x ) ) ) |
62 |
61
|
biimpa |
|- ( ( f e. dom S.1 /\ 0p oR <_ f ) -> A. x e. RR 0 <_ ( f ` x ) ) |
63 |
42
|
ffvelrnda |
|- ( ( f e. dom S.1 /\ x e. RR ) -> ( f ` x ) e. RR ) |
64 |
|
elrege0 |
|- ( ( f ` x ) e. ( 0 [,) +oo ) <-> ( ( f ` x ) e. RR /\ 0 <_ ( f ` x ) ) ) |
65 |
64
|
simplbi2 |
|- ( ( f ` x ) e. RR -> ( 0 <_ ( f ` x ) -> ( f ` x ) e. ( 0 [,) +oo ) ) ) |
66 |
63 65
|
syl |
|- ( ( f e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( f ` x ) -> ( f ` x ) e. ( 0 [,) +oo ) ) ) |
67 |
66
|
ralimdva |
|- ( f e. dom S.1 -> ( A. x e. RR 0 <_ ( f ` x ) -> A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) ) |
68 |
67
|
imp |
|- ( ( f e. dom S.1 /\ A. x e. RR 0 <_ ( f ` x ) ) -> A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) |
69 |
62 68
|
syldan |
|- ( ( f e. dom S.1 /\ 0p oR <_ f ) -> A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) |
70 |
|
ffnfv |
|- ( f : RR --> ( 0 [,) +oo ) <-> ( f Fn RR /\ A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) ) |
71 |
44 69 70
|
sylanbrc |
|- ( ( f e. dom S.1 /\ 0p oR <_ f ) -> f : RR --> ( 0 [,) +oo ) ) |
72 |
71
|
ex |
|- ( f e. dom S.1 -> ( 0p oR <_ f -> f : RR --> ( 0 [,) +oo ) ) ) |
73 |
41 72
|
vtoclga |
|- ( ( P ` m ) e. dom S.1 -> ( 0p oR <_ ( P ` m ) -> ( P ` m ) : RR --> ( 0 [,) +oo ) ) ) |
74 |
30 38 73
|
sylc |
|- ( ( ph /\ m e. NN ) -> ( P ` m ) : RR --> ( 0 [,) +oo ) ) |
75 |
10
|
ffvelrnda |
|- ( ( ph /\ m e. NN ) -> ( Q ` m ) e. dom S.1 ) |
76 |
|
fveq2 |
|- ( n = m -> ( Q ` n ) = ( Q ` m ) ) |
77 |
76
|
breq2d |
|- ( n = m -> ( 0p oR <_ ( Q ` n ) <-> 0p oR <_ ( Q ` m ) ) ) |
78 |
|
fvoveq1 |
|- ( n = m -> ( Q ` ( n + 1 ) ) = ( Q ` ( m + 1 ) ) ) |
79 |
76 78
|
breq12d |
|- ( n = m -> ( ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) <-> ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) |
80 |
77 79
|
anbi12d |
|- ( n = m -> ( ( 0p oR <_ ( Q ` n ) /\ ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) ) <-> ( 0p oR <_ ( Q ` m ) /\ ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) ) |
81 |
80
|
rspccva |
|- ( ( A. n e. NN ( 0p oR <_ ( Q ` n ) /\ ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) ) /\ m e. NN ) -> ( 0p oR <_ ( Q ` m ) /\ ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) |
82 |
11 81
|
sylan |
|- ( ( ph /\ m e. NN ) -> ( 0p oR <_ ( Q ` m ) /\ ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) |
83 |
82
|
simpld |
|- ( ( ph /\ m e. NN ) -> 0p oR <_ ( Q ` m ) ) |
84 |
|
breq2 |
|- ( f = ( Q ` m ) -> ( 0p oR <_ f <-> 0p oR <_ ( Q ` m ) ) ) |
85 |
|
feq1 |
|- ( f = ( Q ` m ) -> ( f : RR --> ( 0 [,) +oo ) <-> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) ) |
86 |
84 85
|
imbi12d |
|- ( f = ( Q ` m ) -> ( ( 0p oR <_ f -> f : RR --> ( 0 [,) +oo ) ) <-> ( 0p oR <_ ( Q ` m ) -> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) ) ) |
87 |
86 72
|
vtoclga |
|- ( ( Q ` m ) e. dom S.1 -> ( 0p oR <_ ( Q ` m ) -> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) ) |
88 |
75 83 87
|
sylc |
|- ( ( ph /\ m e. NN ) -> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) |
89 |
16
|
a1i |
|- ( ( ph /\ m e. NN ) -> RR e. _V ) |
90 |
29 74 88 89 89 18
|
off |
|- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) : RR --> ( 0 [,) +oo ) ) |
91 |
|
0plef |
|- ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> ( 0 [,) +oo ) <-> ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR /\ 0p oR <_ ( ( P ` m ) oF + ( Q ` m ) ) ) ) |
92 |
90 91
|
sylib |
|- ( ( ph /\ m e. NN ) -> ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR /\ 0p oR <_ ( ( P ` m ) oF + ( Q ` m ) ) ) ) |
93 |
92
|
simprd |
|- ( ( ph /\ m e. NN ) -> 0p oR <_ ( ( P ` m ) oF + ( Q ` m ) ) ) |
94 |
7
|
ffnd |
|- ( ph -> P Fn NN ) |
95 |
10
|
ffnd |
|- ( ph -> Q Fn NN ) |
96 |
|
eqidd |
|- ( ( ph /\ m e. NN ) -> ( P ` m ) = ( P ` m ) ) |
97 |
|
eqidd |
|- ( ( ph /\ m e. NN ) -> ( Q ` m ) = ( Q ` m ) ) |
98 |
94 95 25 25 26 96 97
|
ofval |
|- ( ( ph /\ m e. NN ) -> ( ( P oF oF + Q ) ` m ) = ( ( P ` m ) oF + ( Q ` m ) ) ) |
99 |
93 98
|
breqtrrd |
|- ( ( ph /\ m e. NN ) -> 0p oR <_ ( ( P oF oF + Q ) ` m ) ) |
100 |
|
i1ff |
|- ( ( P ` m ) e. dom S.1 -> ( P ` m ) : RR --> RR ) |
101 |
30 100
|
syl |
|- ( ( ph /\ m e. NN ) -> ( P ` m ) : RR --> RR ) |
102 |
101
|
ffvelrnda |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) e. RR ) |
103 |
|
i1ff |
|- ( ( Q ` m ) e. dom S.1 -> ( Q ` m ) : RR --> RR ) |
104 |
75 103
|
syl |
|- ( ( ph /\ m e. NN ) -> ( Q ` m ) : RR --> RR ) |
105 |
104
|
ffvelrnda |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` m ) ` y ) e. RR ) |
106 |
|
peano2nn |
|- ( m e. NN -> ( m + 1 ) e. NN ) |
107 |
|
ffvelrn |
|- ( ( P : NN --> dom S.1 /\ ( m + 1 ) e. NN ) -> ( P ` ( m + 1 ) ) e. dom S.1 ) |
108 |
7 106 107
|
syl2an |
|- ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) e. dom S.1 ) |
109 |
|
i1ff |
|- ( ( P ` ( m + 1 ) ) e. dom S.1 -> ( P ` ( m + 1 ) ) : RR --> RR ) |
110 |
108 109
|
syl |
|- ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) : RR --> RR ) |
111 |
110
|
ffvelrnda |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` ( m + 1 ) ) ` y ) e. RR ) |
112 |
|
ffvelrn |
|- ( ( Q : NN --> dom S.1 /\ ( m + 1 ) e. NN ) -> ( Q ` ( m + 1 ) ) e. dom S.1 ) |
113 |
10 106 112
|
syl2an |
|- ( ( ph /\ m e. NN ) -> ( Q ` ( m + 1 ) ) e. dom S.1 ) |
114 |
|
i1ff |
|- ( ( Q ` ( m + 1 ) ) e. dom S.1 -> ( Q ` ( m + 1 ) ) : RR --> RR ) |
115 |
113 114
|
syl |
|- ( ( ph /\ m e. NN ) -> ( Q ` ( m + 1 ) ) : RR --> RR ) |
116 |
115
|
ffvelrnda |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` ( m + 1 ) ) ` y ) e. RR ) |
117 |
37
|
simprd |
|- ( ( ph /\ m e. NN ) -> ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) |
118 |
101
|
ffnd |
|- ( ( ph /\ m e. NN ) -> ( P ` m ) Fn RR ) |
119 |
110
|
ffnd |
|- ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) Fn RR ) |
120 |
|
eqidd |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) = ( ( P ` m ) ` y ) ) |
121 |
|
eqidd |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` ( m + 1 ) ) ` y ) = ( ( P ` ( m + 1 ) ) ` y ) ) |
122 |
118 119 89 89 18 120 121
|
ofrfval |
|- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oR <_ ( P ` ( m + 1 ) ) <-> A. y e. RR ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) ) |
123 |
117 122
|
mpbid |
|- ( ( ph /\ m e. NN ) -> A. y e. RR ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) |
124 |
123
|
r19.21bi |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) |
125 |
82
|
simprd |
|- ( ( ph /\ m e. NN ) -> ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) |
126 |
104
|
ffnd |
|- ( ( ph /\ m e. NN ) -> ( Q ` m ) Fn RR ) |
127 |
115
|
ffnd |
|- ( ( ph /\ m e. NN ) -> ( Q ` ( m + 1 ) ) Fn RR ) |
128 |
|
eqidd |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` m ) ` y ) = ( ( Q ` m ) ` y ) ) |
129 |
|
eqidd |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` ( m + 1 ) ) ` y ) = ( ( Q ` ( m + 1 ) ) ` y ) ) |
130 |
126 127 89 89 18 128 129
|
ofrfval |
|- ( ( ph /\ m e. NN ) -> ( ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) <-> A. y e. RR ( ( Q ` m ) ` y ) <_ ( ( Q ` ( m + 1 ) ) ` y ) ) ) |
131 |
125 130
|
mpbid |
|- ( ( ph /\ m e. NN ) -> A. y e. RR ( ( Q ` m ) ` y ) <_ ( ( Q ` ( m + 1 ) ) ` y ) ) |
132 |
131
|
r19.21bi |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` m ) ` y ) <_ ( ( Q ` ( m + 1 ) ) ` y ) ) |
133 |
102 105 111 116 124 132
|
le2addd |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) <_ ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) |
134 |
133
|
ralrimiva |
|- ( ( ph /\ m e. NN ) -> A. y e. RR ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) <_ ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) |
135 |
30 75
|
i1fadd |
|- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) e. dom S.1 ) |
136 |
|
i1ff |
|- ( ( ( P ` m ) oF + ( Q ` m ) ) e. dom S.1 -> ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR ) |
137 |
|
ffn |
|- ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR -> ( ( P ` m ) oF + ( Q ` m ) ) Fn RR ) |
138 |
135 136 137
|
3syl |
|- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) Fn RR ) |
139 |
108 113
|
i1fadd |
|- ( ( ph /\ m e. NN ) -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) e. dom S.1 ) |
140 |
|
i1ff |
|- ( ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) e. dom S.1 -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) : RR --> RR ) |
141 |
139 140
|
syl |
|- ( ( ph /\ m e. NN ) -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) : RR --> RR ) |
142 |
141
|
ffnd |
|- ( ( ph /\ m e. NN ) -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) Fn RR ) |
143 |
118 126 89 89 18 120 128
|
ofval |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P ` m ) oF + ( Q ` m ) ) ` y ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) |
144 |
119 127 89 89 18 121 129
|
ofval |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ` y ) = ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) |
145 |
138 142 89 89 18 143 144
|
ofrfval |
|- ( ( ph /\ m e. NN ) -> ( ( ( P ` m ) oF + ( Q ` m ) ) oR <_ ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) <-> A. y e. RR ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) <_ ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) ) |
146 |
134 145
|
mpbird |
|- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) oR <_ ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ) |
147 |
|
eqidd |
|- ( ( ph /\ ( m + 1 ) e. NN ) -> ( P ` ( m + 1 ) ) = ( P ` ( m + 1 ) ) ) |
148 |
|
eqidd |
|- ( ( ph /\ ( m + 1 ) e. NN ) -> ( Q ` ( m + 1 ) ) = ( Q ` ( m + 1 ) ) ) |
149 |
94 95 25 25 26 147 148
|
ofval |
|- ( ( ph /\ ( m + 1 ) e. NN ) -> ( ( P oF oF + Q ) ` ( m + 1 ) ) = ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ) |
150 |
106 149
|
sylan2 |
|- ( ( ph /\ m e. NN ) -> ( ( P oF oF + Q ) ` ( m + 1 ) ) = ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ) |
151 |
146 98 150
|
3brtr4d |
|- ( ( ph /\ m e. NN ) -> ( ( P oF oF + Q ) ` m ) oR <_ ( ( P oF oF + Q ) ` ( m + 1 ) ) ) |
152 |
99 151
|
jca |
|- ( ( ph /\ m e. NN ) -> ( 0p oR <_ ( ( P oF oF + Q ) ` m ) /\ ( ( P oF oF + Q ) ` m ) oR <_ ( ( P oF oF + Q ) ` ( m + 1 ) ) ) ) |
153 |
152
|
ralrimiva |
|- ( ph -> A. m e. NN ( 0p oR <_ ( ( P oF oF + Q ) ` m ) /\ ( ( P oF oF + Q ) ` m ) oR <_ ( ( P oF oF + Q ) ` ( m + 1 ) ) ) ) |
154 |
|
fveq2 |
|- ( n = m -> ( ( P oF oF + Q ) ` n ) = ( ( P oF oF + Q ) ` m ) ) |
155 |
154
|
fveq1d |
|- ( n = m -> ( ( ( P oF oF + Q ) ` n ) ` y ) = ( ( ( P oF oF + Q ) ` m ) ` y ) ) |
156 |
155
|
cbvmptv |
|- ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) = ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) |
157 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
158 |
|
1zzd |
|- ( ( ph /\ y e. RR ) -> 1 e. ZZ ) |
159 |
|
fveq2 |
|- ( x = y -> ( ( P ` n ) ` x ) = ( ( P ` n ) ` y ) ) |
160 |
159
|
mpteq2dv |
|- ( x = y -> ( n e. NN |-> ( ( P ` n ) ` x ) ) = ( n e. NN |-> ( ( P ` n ) ` y ) ) ) |
161 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
162 |
160 161
|
breq12d |
|- ( x = y -> ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) <-> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) ) |
163 |
162
|
rspccva |
|- ( ( A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) |
164 |
9 163
|
sylan |
|- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) |
165 |
24
|
mptex |
|- ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) e. _V |
166 |
165
|
a1i |
|- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) e. _V ) |
167 |
|
fveq2 |
|- ( x = y -> ( ( Q ` n ) ` x ) = ( ( Q ` n ) ` y ) ) |
168 |
167
|
mpteq2dv |
|- ( x = y -> ( n e. NN |-> ( ( Q ` n ) ` x ) ) = ( n e. NN |-> ( ( Q ` n ) ` y ) ) ) |
169 |
|
fveq2 |
|- ( x = y -> ( G ` x ) = ( G ` y ) ) |
170 |
168 169
|
breq12d |
|- ( x = y -> ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) <-> ( n e. NN |-> ( ( Q ` n ) ` y ) ) ~~> ( G ` y ) ) ) |
171 |
170
|
rspccva |
|- ( ( A. x e. RR ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) /\ y e. RR ) -> ( n e. NN |-> ( ( Q ` n ) ` y ) ) ~~> ( G ` y ) ) |
172 |
12 171
|
sylan |
|- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( Q ` n ) ` y ) ) ~~> ( G ` y ) ) |
173 |
31
|
fveq1d |
|- ( n = m -> ( ( P ` n ) ` y ) = ( ( P ` m ) ` y ) ) |
174 |
|
eqid |
|- ( n e. NN |-> ( ( P ` n ) ` y ) ) = ( n e. NN |-> ( ( P ` n ) ` y ) ) |
175 |
|
fvex |
|- ( ( P ` m ) ` y ) e. _V |
176 |
173 174 175
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) = ( ( P ` m ) ` y ) ) |
177 |
176
|
adantl |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) = ( ( P ` m ) ` y ) ) |
178 |
102
|
an32s |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( P ` m ) ` y ) e. RR ) |
179 |
177 178
|
eqeltrd |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) e. RR ) |
180 |
179
|
recnd |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) e. CC ) |
181 |
76
|
fveq1d |
|- ( n = m -> ( ( Q ` n ) ` y ) = ( ( Q ` m ) ` y ) ) |
182 |
|
eqid |
|- ( n e. NN |-> ( ( Q ` n ) ` y ) ) = ( n e. NN |-> ( ( Q ` n ) ` y ) ) |
183 |
|
fvex |
|- ( ( Q ` m ) ` y ) e. _V |
184 |
181 182 183
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) = ( ( Q ` m ) ` y ) ) |
185 |
184
|
adantl |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) = ( ( Q ` m ) ` y ) ) |
186 |
105
|
an32s |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( Q ` m ) ` y ) e. RR ) |
187 |
185 186
|
eqeltrd |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) e. RR ) |
188 |
187
|
recnd |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) e. CC ) |
189 |
98
|
fveq1d |
|- ( ( ph /\ m e. NN ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) oF + ( Q ` m ) ) ` y ) ) |
190 |
189
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) oF + ( Q ` m ) ) ` y ) ) |
191 |
190 143
|
eqtrd |
|- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) |
192 |
191
|
an32s |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) |
193 |
|
eqid |
|- ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) = ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) |
194 |
|
fvex |
|- ( ( ( P oF oF + Q ) ` m ) ` y ) e. _V |
195 |
155 193 194
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ` m ) = ( ( ( P oF oF + Q ) ` m ) ` y ) ) |
196 |
195
|
adantl |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ` m ) = ( ( ( P oF oF + Q ) ` m ) ` y ) ) |
197 |
177 185
|
oveq12d |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) + ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) |
198 |
192 196 197
|
3eqtr4d |
|- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ` m ) = ( ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) + ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) ) ) |
199 |
157 158 164 166 172 180 188 198
|
climadd |
|- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ~~> ( ( F ` y ) + ( G ` y ) ) ) |
200 |
156 199
|
eqbrtrrid |
|- ( ( ph /\ y e. RR ) -> ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) ~~> ( ( F ` y ) + ( G ` y ) ) ) |
201 |
2
|
ffnd |
|- ( ph -> F Fn RR ) |
202 |
5
|
ffnd |
|- ( ph -> G Fn RR ) |
203 |
|
eqidd |
|- ( ( ph /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
204 |
|
eqidd |
|- ( ( ph /\ y e. RR ) -> ( G ` y ) = ( G ` y ) ) |
205 |
201 202 17 17 18 203 204
|
ofval |
|- ( ( ph /\ y e. RR ) -> ( ( F oF + G ) ` y ) = ( ( F ` y ) + ( G ` y ) ) ) |
206 |
200 205
|
breqtrrd |
|- ( ( ph /\ y e. RR ) -> ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) ~~> ( ( F oF + G ) ` y ) ) |
207 |
206
|
ralrimiva |
|- ( ph -> A. y e. RR ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) ~~> ( ( F oF + G ) ` y ) ) |
208 |
|
2fveq3 |
|- ( n = j -> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) = ( S.1 ` ( ( P oF oF + Q ) ` j ) ) ) |
209 |
208
|
cbvmptv |
|- ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) = ( j e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` j ) ) ) |
210 |
3 6
|
readdcld |
|- ( ph -> ( ( S.2 ` F ) + ( S.2 ` G ) ) e. RR ) |
211 |
98
|
fveq2d |
|- ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) = ( S.1 ` ( ( P ` m ) oF + ( Q ` m ) ) ) ) |
212 |
30 75
|
itg1add |
|- ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P ` m ) oF + ( Q ` m ) ) ) = ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) ) |
213 |
211 212
|
eqtrd |
|- ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) = ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) ) |
214 |
|
itg1cl |
|- ( ( P ` m ) e. dom S.1 -> ( S.1 ` ( P ` m ) ) e. RR ) |
215 |
30 214
|
syl |
|- ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) e. RR ) |
216 |
|
itg1cl |
|- ( ( Q ` m ) e. dom S.1 -> ( S.1 ` ( Q ` m ) ) e. RR ) |
217 |
75 216
|
syl |
|- ( ( ph /\ m e. NN ) -> ( S.1 ` ( Q ` m ) ) e. RR ) |
218 |
3
|
adantr |
|- ( ( ph /\ m e. NN ) -> ( S.2 ` F ) e. RR ) |
219 |
6
|
adantr |
|- ( ( ph /\ m e. NN ) -> ( S.2 ` G ) e. RR ) |
220 |
2
|
adantr |
|- ( ( ph /\ m e. NN ) -> F : RR --> ( 0 [,) +oo ) ) |
221 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
222 |
|
fss |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : RR --> ( 0 [,] +oo ) ) |
223 |
220 221 222
|
sylancl |
|- ( ( ph /\ m e. NN ) -> F : RR --> ( 0 [,] +oo ) ) |
224 |
1 2 7 8 9
|
itg2i1fseqle |
|- ( ( ph /\ m e. NN ) -> ( P ` m ) oR <_ F ) |
225 |
|
itg2ub |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( P ` m ) e. dom S.1 /\ ( P ` m ) oR <_ F ) -> ( S.1 ` ( P ` m ) ) <_ ( S.2 ` F ) ) |
226 |
223 30 224 225
|
syl3anc |
|- ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) <_ ( S.2 ` F ) ) |
227 |
5
|
adantr |
|- ( ( ph /\ m e. NN ) -> G : RR --> ( 0 [,) +oo ) ) |
228 |
|
fss |
|- ( ( G : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> G : RR --> ( 0 [,] +oo ) ) |
229 |
227 221 228
|
sylancl |
|- ( ( ph /\ m e. NN ) -> G : RR --> ( 0 [,] +oo ) ) |
230 |
4 5 10 11 12
|
itg2i1fseqle |
|- ( ( ph /\ m e. NN ) -> ( Q ` m ) oR <_ G ) |
231 |
|
itg2ub |
|- ( ( G : RR --> ( 0 [,] +oo ) /\ ( Q ` m ) e. dom S.1 /\ ( Q ` m ) oR <_ G ) -> ( S.1 ` ( Q ` m ) ) <_ ( S.2 ` G ) ) |
232 |
229 75 230 231
|
syl3anc |
|- ( ( ph /\ m e. NN ) -> ( S.1 ` ( Q ` m ) ) <_ ( S.2 ` G ) ) |
233 |
215 217 218 219 226 232
|
le2addd |
|- ( ( ph /\ m e. NN ) -> ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
234 |
213 233
|
eqbrtrd |
|- ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
235 |
234
|
ralrimiva |
|- ( ph -> A. m e. NN ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
236 |
|
2fveq3 |
|- ( m = k -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) = ( S.1 ` ( ( P oF oF + Q ) ` k ) ) ) |
237 |
236
|
breq1d |
|- ( m = k -> ( ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) <-> ( S.1 ` ( ( P oF oF + Q ) ` k ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) ) |
238 |
237
|
rspccva |
|- ( ( A. m e. NN ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) /\ k e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` k ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
239 |
235 238
|
sylan |
|- ( ( ph /\ k e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` k ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
240 |
13 19 27 153 207 209 210 239
|
itg2i1fseq2 |
|- ( ph -> ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( S.2 ` ( F oF + G ) ) ) |
241 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
242 |
|
eqid |
|- ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) = ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) |
243 |
1 2 7 8 9 242 3
|
itg2i1fseq3 |
|- ( ph -> ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ~~> ( S.2 ` F ) ) |
244 |
24
|
mptex |
|- ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) e. _V |
245 |
244
|
a1i |
|- ( ph -> ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) e. _V ) |
246 |
|
eqid |
|- ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) = ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) |
247 |
4 5 10 11 12 246 6
|
itg2i1fseq3 |
|- ( ph -> ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ~~> ( S.2 ` G ) ) |
248 |
|
2fveq3 |
|- ( k = m -> ( S.1 ` ( P ` k ) ) = ( S.1 ` ( P ` m ) ) ) |
249 |
|
fvex |
|- ( S.1 ` ( P ` m ) ) e. _V |
250 |
248 242 249
|
fvmpt |
|- ( m e. NN -> ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) = ( S.1 ` ( P ` m ) ) ) |
251 |
250
|
adantl |
|- ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) = ( S.1 ` ( P ` m ) ) ) |
252 |
215
|
recnd |
|- ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) e. CC ) |
253 |
251 252
|
eqeltrd |
|- ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) e. CC ) |
254 |
|
2fveq3 |
|- ( k = m -> ( S.1 ` ( Q ` k ) ) = ( S.1 ` ( Q ` m ) ) ) |
255 |
|
fvex |
|- ( S.1 ` ( Q ` m ) ) e. _V |
256 |
254 246 255
|
fvmpt |
|- ( m e. NN -> ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) = ( S.1 ` ( Q ` m ) ) ) |
257 |
256
|
adantl |
|- ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) = ( S.1 ` ( Q ` m ) ) ) |
258 |
217
|
recnd |
|- ( ( ph /\ m e. NN ) -> ( S.1 ` ( Q ` m ) ) e. CC ) |
259 |
257 258
|
eqeltrd |
|- ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) e. CC ) |
260 |
|
2fveq3 |
|- ( j = m -> ( S.1 ` ( ( P oF oF + Q ) ` j ) ) = ( S.1 ` ( ( P oF oF + Q ) ` m ) ) ) |
261 |
|
fvex |
|- ( S.1 ` ( ( P oF oF + Q ) ` m ) ) e. _V |
262 |
260 209 261
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ` m ) = ( S.1 ` ( ( P oF oF + Q ) ` m ) ) ) |
263 |
262
|
adantl |
|- ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ` m ) = ( S.1 ` ( ( P oF oF + Q ) ` m ) ) ) |
264 |
251 257
|
oveq12d |
|- ( ( ph /\ m e. NN ) -> ( ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) + ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) ) = ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) ) |
265 |
213 263 264
|
3eqtr4d |
|- ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ` m ) = ( ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) + ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) ) ) |
266 |
157 241 243 245 247 253 259 265
|
climadd |
|- ( ph -> ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
267 |
|
climuni |
|- ( ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( S.2 ` ( F oF + G ) ) /\ ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( ( S.2 ` F ) + ( S.2 ` G ) ) ) -> ( S.2 ` ( F oF + G ) ) = ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
268 |
240 266 267
|
syl2anc |
|- ( ph -> ( S.2 ` ( F oF + G ) ) = ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |