| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( k = K -> ( k x. ( P ^ N ) ) = ( K x. ( P ^ N ) ) ) | 
						
							| 2 | 1 | breq2d |  |-  ( k = K -> ( D || ( k x. ( P ^ N ) ) <-> D || ( K x. ( P ^ N ) ) ) ) | 
						
							| 3 |  | oveq1 |  |-  ( k = K -> ( k x. ( P ^ ( N - 1 ) ) ) = ( K x. ( P ^ ( N - 1 ) ) ) ) | 
						
							| 4 | 3 | breq2d |  |-  ( k = K -> ( D || ( k x. ( P ^ ( N - 1 ) ) ) <-> D || ( K x. ( P ^ ( N - 1 ) ) ) ) ) | 
						
							| 5 | 4 | notbid |  |-  ( k = K -> ( -. D || ( k x. ( P ^ ( N - 1 ) ) ) <-> -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) ) | 
						
							| 6 | 2 5 | anbi12d |  |-  ( k = K -> ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) <-> ( D || ( K x. ( P ^ N ) ) /\ -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) ) ) | 
						
							| 7 | 6 | imbi1d |  |-  ( k = K -> ( ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) <-> ( ( D || ( K x. ( P ^ N ) ) /\ -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) | 
						
							| 8 |  | oveq2 |  |-  ( x = 1 -> ( P ^ x ) = ( P ^ 1 ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( x = 1 -> ( k x. ( P ^ x ) ) = ( k x. ( P ^ 1 ) ) ) | 
						
							| 10 | 9 | breq2d |  |-  ( x = 1 -> ( D || ( k x. ( P ^ x ) ) <-> D || ( k x. ( P ^ 1 ) ) ) ) | 
						
							| 11 |  | oveq1 |  |-  ( x = 1 -> ( x - 1 ) = ( 1 - 1 ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( x = 1 -> ( P ^ ( x - 1 ) ) = ( P ^ ( 1 - 1 ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( x = 1 -> ( k x. ( P ^ ( x - 1 ) ) ) = ( k x. ( P ^ ( 1 - 1 ) ) ) ) | 
						
							| 14 | 13 | breq2d |  |-  ( x = 1 -> ( D || ( k x. ( P ^ ( x - 1 ) ) ) <-> D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) ) | 
						
							| 15 | 14 | notbid |  |-  ( x = 1 -> ( -. D || ( k x. ( P ^ ( x - 1 ) ) ) <-> -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) ) | 
						
							| 16 | 10 15 | anbi12d |  |-  ( x = 1 -> ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) ) ) | 
						
							| 17 | 8 | breq1d |  |-  ( x = 1 -> ( ( P ^ x ) || D <-> ( P ^ 1 ) || D ) ) | 
						
							| 18 | 16 17 | imbi12d |  |-  ( x = 1 -> ( ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) -> ( P ^ 1 ) || D ) ) ) | 
						
							| 19 | 18 | ralbidv |  |-  ( x = 1 -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> A. k e. ZZ ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) -> ( P ^ 1 ) || D ) ) ) | 
						
							| 20 | 19 | imbi2d |  |-  ( x = 1 -> ( ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) ) <-> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) -> ( P ^ 1 ) || D ) ) ) ) | 
						
							| 21 |  | oveq2 |  |-  ( x = n -> ( P ^ x ) = ( P ^ n ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( x = n -> ( k x. ( P ^ x ) ) = ( k x. ( P ^ n ) ) ) | 
						
							| 23 | 22 | breq2d |  |-  ( x = n -> ( D || ( k x. ( P ^ x ) ) <-> D || ( k x. ( P ^ n ) ) ) ) | 
						
							| 24 |  | oveq1 |  |-  ( x = n -> ( x - 1 ) = ( n - 1 ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( x = n -> ( P ^ ( x - 1 ) ) = ( P ^ ( n - 1 ) ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( x = n -> ( k x. ( P ^ ( x - 1 ) ) ) = ( k x. ( P ^ ( n - 1 ) ) ) ) | 
						
							| 27 | 26 | breq2d |  |-  ( x = n -> ( D || ( k x. ( P ^ ( x - 1 ) ) ) <-> D || ( k x. ( P ^ ( n - 1 ) ) ) ) ) | 
						
							| 28 | 27 | notbid |  |-  ( x = n -> ( -. D || ( k x. ( P ^ ( x - 1 ) ) ) <-> -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) ) | 
						
							| 29 | 23 28 | anbi12d |  |-  ( x = n -> ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) ) ) | 
						
							| 30 | 21 | breq1d |  |-  ( x = n -> ( ( P ^ x ) || D <-> ( P ^ n ) || D ) ) | 
						
							| 31 | 29 30 | imbi12d |  |-  ( x = n -> ( ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) | 
						
							| 32 | 31 | ralbidv |  |-  ( x = n -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) | 
						
							| 33 | 32 | imbi2d |  |-  ( x = n -> ( ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) ) <-> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) ) | 
						
							| 34 |  | oveq2 |  |-  ( x = ( n + 1 ) -> ( P ^ x ) = ( P ^ ( n + 1 ) ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( x = ( n + 1 ) -> ( k x. ( P ^ x ) ) = ( k x. ( P ^ ( n + 1 ) ) ) ) | 
						
							| 36 | 35 | breq2d |  |-  ( x = ( n + 1 ) -> ( D || ( k x. ( P ^ x ) ) <-> D || ( k x. ( P ^ ( n + 1 ) ) ) ) ) | 
						
							| 37 |  | oveq1 |  |-  ( x = ( n + 1 ) -> ( x - 1 ) = ( ( n + 1 ) - 1 ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( x = ( n + 1 ) -> ( P ^ ( x - 1 ) ) = ( P ^ ( ( n + 1 ) - 1 ) ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( x = ( n + 1 ) -> ( k x. ( P ^ ( x - 1 ) ) ) = ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) | 
						
							| 40 | 39 | breq2d |  |-  ( x = ( n + 1 ) -> ( D || ( k x. ( P ^ ( x - 1 ) ) ) <-> D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) ) | 
						
							| 41 | 40 | notbid |  |-  ( x = ( n + 1 ) -> ( -. D || ( k x. ( P ^ ( x - 1 ) ) ) <-> -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) ) | 
						
							| 42 | 36 41 | anbi12d |  |-  ( x = ( n + 1 ) -> ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) ) ) | 
						
							| 43 | 34 | breq1d |  |-  ( x = ( n + 1 ) -> ( ( P ^ x ) || D <-> ( P ^ ( n + 1 ) ) || D ) ) | 
						
							| 44 | 42 43 | imbi12d |  |-  ( x = ( n + 1 ) -> ( ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 45 | 44 | ralbidv |  |-  ( x = ( n + 1 ) -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 46 | 45 | imbi2d |  |-  ( x = ( n + 1 ) -> ( ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) ) <-> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) ) | 
						
							| 47 |  | oveq2 |  |-  ( x = N -> ( P ^ x ) = ( P ^ N ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( x = N -> ( k x. ( P ^ x ) ) = ( k x. ( P ^ N ) ) ) | 
						
							| 49 | 48 | breq2d |  |-  ( x = N -> ( D || ( k x. ( P ^ x ) ) <-> D || ( k x. ( P ^ N ) ) ) ) | 
						
							| 50 |  | oveq1 |  |-  ( x = N -> ( x - 1 ) = ( N - 1 ) ) | 
						
							| 51 | 50 | oveq2d |  |-  ( x = N -> ( P ^ ( x - 1 ) ) = ( P ^ ( N - 1 ) ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( x = N -> ( k x. ( P ^ ( x - 1 ) ) ) = ( k x. ( P ^ ( N - 1 ) ) ) ) | 
						
							| 53 | 52 | breq2d |  |-  ( x = N -> ( D || ( k x. ( P ^ ( x - 1 ) ) ) <-> D || ( k x. ( P ^ ( N - 1 ) ) ) ) ) | 
						
							| 54 | 53 | notbid |  |-  ( x = N -> ( -. D || ( k x. ( P ^ ( x - 1 ) ) ) <-> -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) ) | 
						
							| 55 | 49 54 | anbi12d |  |-  ( x = N -> ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) ) ) | 
						
							| 56 | 47 | breq1d |  |-  ( x = N -> ( ( P ^ x ) || D <-> ( P ^ N ) || D ) ) | 
						
							| 57 | 55 56 | imbi12d |  |-  ( x = N -> ( ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) | 
						
							| 58 | 57 | ralbidv |  |-  ( x = N -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) | 
						
							| 59 | 58 | imbi2d |  |-  ( x = N -> ( ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) ) <-> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) ) | 
						
							| 60 |  | breq1 |  |-  ( x = D -> ( x || ( k x. P ) <-> D || ( k x. P ) ) ) | 
						
							| 61 |  | breq1 |  |-  ( x = D -> ( x || k <-> D || k ) ) | 
						
							| 62 | 61 | notbid |  |-  ( x = D -> ( -. x || k <-> -. D || k ) ) | 
						
							| 63 | 60 62 | anbi12d |  |-  ( x = D -> ( ( x || ( k x. P ) /\ -. x || k ) <-> ( D || ( k x. P ) /\ -. D || k ) ) ) | 
						
							| 64 |  | breq2 |  |-  ( x = D -> ( P || x <-> P || D ) ) | 
						
							| 65 | 63 64 | imbi12d |  |-  ( x = D -> ( ( ( x || ( k x. P ) /\ -. x || k ) -> P || x ) <-> ( ( D || ( k x. P ) /\ -. D || k ) -> P || D ) ) ) | 
						
							| 66 | 65 | imbi2d |  |-  ( x = D -> ( ( ( P e. Prime /\ k e. ZZ ) -> ( ( x || ( k x. P ) /\ -. x || k ) -> P || x ) ) <-> ( ( P e. Prime /\ k e. ZZ ) -> ( ( D || ( k x. P ) /\ -. D || k ) -> P || D ) ) ) ) | 
						
							| 67 |  | simplrl |  |-  ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> P e. Prime ) | 
						
							| 68 |  | simpll |  |-  ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> x e. ZZ ) | 
						
							| 69 |  | coprm |  |-  ( ( P e. Prime /\ x e. ZZ ) -> ( -. P || x <-> ( P gcd x ) = 1 ) ) | 
						
							| 70 | 67 68 69 | syl2anc |  |-  ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> ( -. P || x <-> ( P gcd x ) = 1 ) ) | 
						
							| 71 |  | zcn |  |-  ( k e. ZZ -> k e. CC ) | 
						
							| 72 | 71 | ad2antll |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. CC ) | 
						
							| 73 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 74 | 73 | ad2antrl |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. ZZ ) | 
						
							| 75 | 74 | zcnd |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. CC ) | 
						
							| 76 | 72 75 | mulcomd |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. P ) = ( P x. k ) ) | 
						
							| 77 | 76 | breq2d |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( x || ( k x. P ) <-> x || ( P x. k ) ) ) | 
						
							| 78 |  | simpl |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> x e. ZZ ) | 
						
							| 79 | 74 78 | gcdcomd |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P gcd x ) = ( x gcd P ) ) | 
						
							| 80 | 79 | eqeq1d |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P gcd x ) = 1 <-> ( x gcd P ) = 1 ) ) | 
						
							| 81 | 77 80 | anbi12d |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x || ( k x. P ) /\ ( P gcd x ) = 1 ) <-> ( x || ( P x. k ) /\ ( x gcd P ) = 1 ) ) ) | 
						
							| 82 |  | simprr |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. ZZ ) | 
						
							| 83 |  | coprmdvds |  |-  ( ( x e. ZZ /\ P e. ZZ /\ k e. ZZ ) -> ( ( x || ( P x. k ) /\ ( x gcd P ) = 1 ) -> x || k ) ) | 
						
							| 84 | 78 74 82 83 | syl3anc |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x || ( P x. k ) /\ ( x gcd P ) = 1 ) -> x || k ) ) | 
						
							| 85 | 81 84 | sylbid |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x || ( k x. P ) /\ ( P gcd x ) = 1 ) -> x || k ) ) | 
						
							| 86 | 85 | expdimp |  |-  ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> ( ( P gcd x ) = 1 -> x || k ) ) | 
						
							| 87 | 70 86 | sylbid |  |-  ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> ( -. P || x -> x || k ) ) | 
						
							| 88 | 87 | con1d |  |-  ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> ( -. x || k -> P || x ) ) | 
						
							| 89 | 88 | expimpd |  |-  ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x || ( k x. P ) /\ -. x || k ) -> P || x ) ) | 
						
							| 90 | 89 | ex |  |-  ( x e. ZZ -> ( ( P e. Prime /\ k e. ZZ ) -> ( ( x || ( k x. P ) /\ -. x || k ) -> P || x ) ) ) | 
						
							| 91 | 66 90 | vtoclga |  |-  ( D e. ZZ -> ( ( P e. Prime /\ k e. ZZ ) -> ( ( D || ( k x. P ) /\ -. D || k ) -> P || D ) ) ) | 
						
							| 92 | 91 | impl |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( ( D || ( k x. P ) /\ -. D || k ) -> P || D ) ) | 
						
							| 93 | 73 | zcnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 94 | 93 | exp1d |  |-  ( P e. Prime -> ( P ^ 1 ) = P ) | 
						
							| 95 | 94 | ad2antlr |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( P ^ 1 ) = P ) | 
						
							| 96 | 95 | oveq2d |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( k x. ( P ^ 1 ) ) = ( k x. P ) ) | 
						
							| 97 | 96 | breq2d |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( D || ( k x. ( P ^ 1 ) ) <-> D || ( k x. P ) ) ) | 
						
							| 98 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 99 | 98 | oveq2i |  |-  ( P ^ ( 1 - 1 ) ) = ( P ^ 0 ) | 
						
							| 100 | 73 | ad2antlr |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> P e. ZZ ) | 
						
							| 101 | 100 | zcnd |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> P e. CC ) | 
						
							| 102 | 101 | exp0d |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( P ^ 0 ) = 1 ) | 
						
							| 103 | 99 102 | eqtrid |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( P ^ ( 1 - 1 ) ) = 1 ) | 
						
							| 104 | 103 | oveq2d |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( k x. ( P ^ ( 1 - 1 ) ) ) = ( k x. 1 ) ) | 
						
							| 105 | 71 | adantl |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> k e. CC ) | 
						
							| 106 | 105 | mulridd |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( k x. 1 ) = k ) | 
						
							| 107 | 104 106 | eqtrd |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( k x. ( P ^ ( 1 - 1 ) ) ) = k ) | 
						
							| 108 | 107 | breq2d |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( D || ( k x. ( P ^ ( 1 - 1 ) ) ) <-> D || k ) ) | 
						
							| 109 | 108 | notbid |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) <-> -. D || k ) ) | 
						
							| 110 | 97 109 | anbi12d |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) <-> ( D || ( k x. P ) /\ -. D || k ) ) ) | 
						
							| 111 | 101 | exp1d |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( P ^ 1 ) = P ) | 
						
							| 112 | 111 | breq1d |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( ( P ^ 1 ) || D <-> P || D ) ) | 
						
							| 113 | 92 110 112 | 3imtr4d |  |-  ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) -> ( P ^ 1 ) || D ) ) | 
						
							| 114 | 113 | ralrimiva |  |-  ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) -> ( P ^ 1 ) || D ) ) | 
						
							| 115 |  | oveq1 |  |-  ( k = x -> ( k x. ( P ^ n ) ) = ( x x. ( P ^ n ) ) ) | 
						
							| 116 | 115 | breq2d |  |-  ( k = x -> ( D || ( k x. ( P ^ n ) ) <-> D || ( x x. ( P ^ n ) ) ) ) | 
						
							| 117 |  | oveq1 |  |-  ( k = x -> ( k x. ( P ^ ( n - 1 ) ) ) = ( x x. ( P ^ ( n - 1 ) ) ) ) | 
						
							| 118 | 117 | breq2d |  |-  ( k = x -> ( D || ( k x. ( P ^ ( n - 1 ) ) ) <-> D || ( x x. ( P ^ ( n - 1 ) ) ) ) ) | 
						
							| 119 | 118 | notbid |  |-  ( k = x -> ( -. D || ( k x. ( P ^ ( n - 1 ) ) ) <-> -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) ) | 
						
							| 120 | 116 119 | anbi12d |  |-  ( k = x -> ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) <-> ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) ) ) | 
						
							| 121 | 120 | imbi1d |  |-  ( k = x -> ( ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) <-> ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) | 
						
							| 122 | 121 | cbvralvw |  |-  ( A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) <-> A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) | 
						
							| 123 |  | simprr |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. ZZ ) | 
						
							| 124 | 73 | ad2antrl |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. ZZ ) | 
						
							| 125 | 123 124 | zmulcld |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. P ) e. ZZ ) | 
						
							| 126 |  | oveq1 |  |-  ( x = ( k x. P ) -> ( x x. ( P ^ n ) ) = ( ( k x. P ) x. ( P ^ n ) ) ) | 
						
							| 127 | 126 | breq2d |  |-  ( x = ( k x. P ) -> ( D || ( x x. ( P ^ n ) ) <-> D || ( ( k x. P ) x. ( P ^ n ) ) ) ) | 
						
							| 128 |  | oveq1 |  |-  ( x = ( k x. P ) -> ( x x. ( P ^ ( n - 1 ) ) ) = ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) | 
						
							| 129 | 128 | breq2d |  |-  ( x = ( k x. P ) -> ( D || ( x x. ( P ^ ( n - 1 ) ) ) <-> D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) ) | 
						
							| 130 | 129 | notbid |  |-  ( x = ( k x. P ) -> ( -. D || ( x x. ( P ^ ( n - 1 ) ) ) <-> -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) ) | 
						
							| 131 | 127 130 | anbi12d |  |-  ( x = ( k x. P ) -> ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) <-> ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) ) ) | 
						
							| 132 | 131 | imbi1d |  |-  ( x = ( k x. P ) -> ( ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) <-> ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) | 
						
							| 133 | 132 | rspcv |  |-  ( ( k x. P ) e. ZZ -> ( A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) | 
						
							| 134 | 125 133 | syl |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) | 
						
							| 135 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 136 | 135 | ad2antrr |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> n e. NN0 ) | 
						
							| 137 |  | zexpcl |  |-  ( ( P e. ZZ /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) | 
						
							| 138 | 124 136 137 | syl2anc |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) e. ZZ ) | 
						
							| 139 |  | simplr |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> D e. ZZ ) | 
						
							| 140 |  | divides |  |-  ( ( ( P ^ n ) e. ZZ /\ D e. ZZ ) -> ( ( P ^ n ) || D <-> E. x e. ZZ ( x x. ( P ^ n ) ) = D ) ) | 
						
							| 141 | 138 139 140 | syl2anc |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P ^ n ) || D <-> E. x e. ZZ ( x x. ( P ^ n ) ) = D ) ) | 
						
							| 142 | 89 | adantll |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x || ( k x. P ) /\ -. x || k ) -> P || x ) ) | 
						
							| 143 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 144 | 143 | ad2antrl |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. NN ) | 
						
							| 145 | 144 | nncnd |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. CC ) | 
						
							| 146 | 135 | ad2antrr |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> n e. NN0 ) | 
						
							| 147 | 145 146 | expp1d |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( n + 1 ) ) = ( ( P ^ n ) x. P ) ) | 
						
							| 148 | 144 146 | nnexpcld |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) e. NN ) | 
						
							| 149 | 148 | nncnd |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) e. CC ) | 
						
							| 150 | 149 145 | mulcomd |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P ^ n ) x. P ) = ( P x. ( P ^ n ) ) ) | 
						
							| 151 | 147 150 | eqtrd |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( n + 1 ) ) = ( P x. ( P ^ n ) ) ) | 
						
							| 152 | 151 | oveq2d |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. ( P ^ ( n + 1 ) ) ) = ( k x. ( P x. ( P ^ n ) ) ) ) | 
						
							| 153 | 71 | ad2antll |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. CC ) | 
						
							| 154 | 153 145 149 | mulassd |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( k x. P ) x. ( P ^ n ) ) = ( k x. ( P x. ( P ^ n ) ) ) ) | 
						
							| 155 | 152 154 | eqtr4d |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. ( P ^ ( n + 1 ) ) ) = ( ( k x. P ) x. ( P ^ n ) ) ) | 
						
							| 156 | 155 | breq2d |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) <-> ( x x. ( P ^ n ) ) || ( ( k x. P ) x. ( P ^ n ) ) ) ) | 
						
							| 157 |  | simplr |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> x e. ZZ ) | 
						
							| 158 |  | simprr |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. ZZ ) | 
						
							| 159 | 144 | nnzd |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. ZZ ) | 
						
							| 160 | 158 159 | zmulcld |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. P ) e. ZZ ) | 
						
							| 161 | 148 | nnzd |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) e. ZZ ) | 
						
							| 162 | 148 | nnne0d |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) =/= 0 ) | 
						
							| 163 |  | dvdsmulcr |  |-  ( ( x e. ZZ /\ ( k x. P ) e. ZZ /\ ( ( P ^ n ) e. ZZ /\ ( P ^ n ) =/= 0 ) ) -> ( ( x x. ( P ^ n ) ) || ( ( k x. P ) x. ( P ^ n ) ) <-> x || ( k x. P ) ) ) | 
						
							| 164 | 157 160 161 162 163 | syl112anc |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x x. ( P ^ n ) ) || ( ( k x. P ) x. ( P ^ n ) ) <-> x || ( k x. P ) ) ) | 
						
							| 165 | 156 164 | bitrd |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) <-> x || ( k x. P ) ) ) | 
						
							| 166 |  | dvdsmulcr |  |-  ( ( x e. ZZ /\ k e. ZZ /\ ( ( P ^ n ) e. ZZ /\ ( P ^ n ) =/= 0 ) ) -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) <-> x || k ) ) | 
						
							| 167 | 157 158 161 162 166 | syl112anc |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) <-> x || k ) ) | 
						
							| 168 | 167 | notbid |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) <-> -. x || k ) ) | 
						
							| 169 | 165 168 | anbi12d |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) ) <-> ( x || ( k x. P ) /\ -. x || k ) ) ) | 
						
							| 170 | 151 | breq1d |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) <-> ( P x. ( P ^ n ) ) || ( x x. ( P ^ n ) ) ) ) | 
						
							| 171 |  | dvdsmulcr |  |-  ( ( P e. ZZ /\ x e. ZZ /\ ( ( P ^ n ) e. ZZ /\ ( P ^ n ) =/= 0 ) ) -> ( ( P x. ( P ^ n ) ) || ( x x. ( P ^ n ) ) <-> P || x ) ) | 
						
							| 172 | 159 157 161 162 171 | syl112anc |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P x. ( P ^ n ) ) || ( x x. ( P ^ n ) ) <-> P || x ) ) | 
						
							| 173 | 170 172 | bitrd |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) <-> P || x ) ) | 
						
							| 174 | 142 169 173 | 3imtr4d |  |-  ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) ) ) | 
						
							| 175 | 174 | an32s |  |-  ( ( ( n e. NN /\ ( P e. Prime /\ k e. ZZ ) ) /\ x e. ZZ ) -> ( ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) ) ) | 
						
							| 176 |  | breq1 |  |-  ( ( x x. ( P ^ n ) ) = D -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) <-> D || ( k x. ( P ^ ( n + 1 ) ) ) ) ) | 
						
							| 177 |  | breq1 |  |-  ( ( x x. ( P ^ n ) ) = D -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) <-> D || ( k x. ( P ^ n ) ) ) ) | 
						
							| 178 | 177 | notbid |  |-  ( ( x x. ( P ^ n ) ) = D -> ( -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) <-> -. D || ( k x. ( P ^ n ) ) ) ) | 
						
							| 179 | 176 178 | anbi12d |  |-  ( ( x x. ( P ^ n ) ) = D -> ( ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) ) <-> ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) ) ) | 
						
							| 180 |  | breq2 |  |-  ( ( x x. ( P ^ n ) ) = D -> ( ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) <-> ( P ^ ( n + 1 ) ) || D ) ) | 
						
							| 181 | 179 180 | imbi12d |  |-  ( ( x x. ( P ^ n ) ) = D -> ( ( ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) ) <-> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 182 | 175 181 | syl5ibcom |  |-  ( ( ( n e. NN /\ ( P e. Prime /\ k e. ZZ ) ) /\ x e. ZZ ) -> ( ( x x. ( P ^ n ) ) = D -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 183 | 182 | rexlimdva |  |-  ( ( n e. NN /\ ( P e. Prime /\ k e. ZZ ) ) -> ( E. x e. ZZ ( x x. ( P ^ n ) ) = D -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 184 | 183 | adantlr |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( E. x e. ZZ ( x x. ( P ^ n ) ) = D -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 185 | 141 184 | sylbid |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P ^ n ) || D -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 186 | 185 | com23 |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( ( P ^ n ) || D -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 187 | 186 | a2d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 188 | 71 | ad2antll |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. CC ) | 
						
							| 189 | 124 | zcnd |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. CC ) | 
						
							| 190 | 138 | zcnd |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) e. CC ) | 
						
							| 191 | 188 189 190 | mulassd |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( k x. P ) x. ( P ^ n ) ) = ( k x. ( P x. ( P ^ n ) ) ) ) | 
						
							| 192 | 189 190 | mulcomd |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P x. ( P ^ n ) ) = ( ( P ^ n ) x. P ) ) | 
						
							| 193 | 189 136 | expp1d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( n + 1 ) ) = ( ( P ^ n ) x. P ) ) | 
						
							| 194 | 192 193 | eqtr4d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P x. ( P ^ n ) ) = ( P ^ ( n + 1 ) ) ) | 
						
							| 195 | 194 | oveq2d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. ( P x. ( P ^ n ) ) ) = ( k x. ( P ^ ( n + 1 ) ) ) ) | 
						
							| 196 | 191 195 | eqtrd |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( k x. P ) x. ( P ^ n ) ) = ( k x. ( P ^ ( n + 1 ) ) ) ) | 
						
							| 197 | 196 | breq2d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( D || ( ( k x. P ) x. ( P ^ n ) ) <-> D || ( k x. ( P ^ ( n + 1 ) ) ) ) ) | 
						
							| 198 |  | nnm1nn0 |  |-  ( n e. NN -> ( n - 1 ) e. NN0 ) | 
						
							| 199 | 198 | ad2antrr |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( n - 1 ) e. NN0 ) | 
						
							| 200 |  | zexpcl |  |-  ( ( P e. ZZ /\ ( n - 1 ) e. NN0 ) -> ( P ^ ( n - 1 ) ) e. ZZ ) | 
						
							| 201 | 124 199 200 | syl2anc |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( n - 1 ) ) e. ZZ ) | 
						
							| 202 | 201 | zcnd |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( n - 1 ) ) e. CC ) | 
						
							| 203 | 188 189 202 | mulassd |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) = ( k x. ( P x. ( P ^ ( n - 1 ) ) ) ) ) | 
						
							| 204 | 189 202 | mulcomd |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P x. ( P ^ ( n - 1 ) ) ) = ( ( P ^ ( n - 1 ) ) x. P ) ) | 
						
							| 205 |  | simpll |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> n e. NN ) | 
						
							| 206 |  | expm1t |  |-  ( ( P e. CC /\ n e. NN ) -> ( P ^ n ) = ( ( P ^ ( n - 1 ) ) x. P ) ) | 
						
							| 207 | 189 205 206 | syl2anc |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) = ( ( P ^ ( n - 1 ) ) x. P ) ) | 
						
							| 208 | 204 207 | eqtr4d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P x. ( P ^ ( n - 1 ) ) ) = ( P ^ n ) ) | 
						
							| 209 | 208 | oveq2d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. ( P x. ( P ^ ( n - 1 ) ) ) ) = ( k x. ( P ^ n ) ) ) | 
						
							| 210 | 203 209 | eqtrd |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) = ( k x. ( P ^ n ) ) ) | 
						
							| 211 | 210 | breq2d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) <-> D || ( k x. ( P ^ n ) ) ) ) | 
						
							| 212 | 211 | notbid |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) <-> -. D || ( k x. ( P ^ n ) ) ) ) | 
						
							| 213 | 197 212 | anbi12d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) ) ) | 
						
							| 214 | 213 | imbi1d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) <-> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ n ) || D ) ) ) | 
						
							| 215 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 216 | 215 | ad2antrr |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> n e. CC ) | 
						
							| 217 |  | ax-1cn |  |-  1 e. CC | 
						
							| 218 |  | pncan |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 219 | 216 217 218 | sylancl |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 220 | 219 | oveq2d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( ( n + 1 ) - 1 ) ) = ( P ^ n ) ) | 
						
							| 221 | 220 | oveq2d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) = ( k x. ( P ^ n ) ) ) | 
						
							| 222 | 221 | breq2d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) <-> D || ( k x. ( P ^ n ) ) ) ) | 
						
							| 223 | 222 | notbid |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) <-> -. D || ( k x. ( P ^ n ) ) ) ) | 
						
							| 224 | 223 | anbi2d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) ) ) | 
						
							| 225 | 224 | imbi1d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) <-> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 226 | 187 214 225 | 3imtr4d |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 227 | 134 226 | syld |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 228 | 227 | anassrs |  |-  ( ( ( ( n e. NN /\ D e. ZZ ) /\ P e. Prime ) /\ k e. ZZ ) -> ( A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 229 | 228 | ralrimdva |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ P e. Prime ) -> ( A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 230 | 122 229 | biimtrid |  |-  ( ( ( n e. NN /\ D e. ZZ ) /\ P e. Prime ) -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) | 
						
							| 231 | 230 | expl |  |-  ( n e. NN -> ( ( D e. ZZ /\ P e. Prime ) -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) ) | 
						
							| 232 | 231 | a2d |  |-  ( n e. NN -> ( ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) -> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) ) | 
						
							| 233 | 20 33 46 59 114 232 | nnind |  |-  ( N e. NN -> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) | 
						
							| 234 | 233 | com12 |  |-  ( ( D e. ZZ /\ P e. Prime ) -> ( N e. NN -> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) | 
						
							| 235 | 234 | impr |  |-  ( ( D e. ZZ /\ ( P e. Prime /\ N e. NN ) ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) | 
						
							| 236 | 235 | adantll |  |-  ( ( ( K e. ZZ /\ D e. ZZ ) /\ ( P e. Prime /\ N e. NN ) ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) | 
						
							| 237 |  | simpll |  |-  ( ( ( K e. ZZ /\ D e. ZZ ) /\ ( P e. Prime /\ N e. NN ) ) -> K e. ZZ ) | 
						
							| 238 | 7 236 237 | rspcdva |  |-  ( ( ( K e. ZZ /\ D e. ZZ ) /\ ( P e. Prime /\ N e. NN ) ) -> ( ( D || ( K x. ( P ^ N ) ) /\ -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) | 
						
							| 239 | 238 | 3impia |  |-  ( ( ( K e. ZZ /\ D e. ZZ ) /\ ( P e. Prime /\ N e. NN ) /\ ( D || ( K x. ( P ^ N ) ) /\ -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) ) -> ( P ^ N ) || D ) |